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Abstract

We prove new connections between permutation patterns and singularities of Schubert varieties,
by giving a new characterization of factorial and Gorenstein varieties in terms of so called
bivincular patterns. These are generalizations of classical patterns where conditions are placed
on the location of an occurrence in a permutation, as well as on the values in the occurrence.
This clarifies what happens when the requirement of smoothness is weakened to factoriality and
further to Gorensteinness, extending work of Bousquet-Mélou and Butler (2007), and Woo and
Yong (2006). We also prove results that translate some known patterns in the literature into
bivincular patterns.

Nous démontrons de nouveaux liens entre les motifs de permutation et les singularités des
variétés de Schubert, par la méthode de donner une nouvelle caractérisation des variétés facto-
rielles et de Gorenstein par rapport à les motifs bivinculaires. Ces motifs sont généralisations
des motifs classiques où des conditions se posent sur la position d’une occurrence dans une
permutation, aussi bien que sur les valeurs qui se présentent dans l’occurrence. Ceci éclaircit les
phénomènes où la condition de nonsingularité s’affaiblit á factorialité et même à Gorensteinité,
et augmente les travaux de Bousquet-Mélou et Butler (2007), et de Woo et Yong (2006). Nous
démontrons également des résultats qui traduisent quelques motifs connus en la littérature en
motifs bivinculaires.
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Introduction

The goal of this project was to unify descriptions of permutation patterns related to Schubert
varieties in the complete flag manifold. Before we state our results we review some definitions.
The results obtained can be summarized in the table below.

Xπ is The permutation π avoids the patterns
smooth 2143 and 1324
factorial 2143 and 1324

Gorenstein
1
3
2
1
3
5
4
2
5
4 , 1

2
2
4
3
1
4
5
5
3 ; and satisfies a condition on

descents involving two infinite families of bivincular patterns

Complete flags and Schubert cells

We will only consider complete flags in Cm so we will simply refer to them as flags. A flag is a
sequence of vector-subspaces of Cm

E• = (E1 ⊂ E2 ⊂ · · · ⊂ Em = Cm),

with the property that dimEi = i. The set of all such flags is called the (complete) flag
manifold, and denoted by F`(Cm). We want to consider special subsets of this flag manifold
called Schubert cells.

If we choose a basis f1, f2, . . . , fm, for Cm then we can fix a reference flag

F• = (F1 ⊂ F2 ⊂ · · · ⊂ Fm)

such that Fi is spanned by the first i basis vectors. Using this reference flag and a permutation
π in Sm we can define the Schubert cell X◦

π ⊆ F`(Cm) which contains the flags E• such that

dim(Ep ∩ Fq) = #{i ≤ p |π(i) ≤ q},
for 1 ≤ p, q ≤ m.

Example (A Schubert cell in F`(C3)). Let π = 231. Then π(1) = 2, π(2) = 3 and π(3) = 1.
The conditions for the Schubert cell X◦

231

dim(Ep ∩ Fq) = #{i ≤ p |π(i) ≤ q},
become

p = 1 p = 2 p = 3
q = 1 0 0 1 E1, E2 intersect F1 in a point
q = 2 1 1 2 E1 ⊂ F2, E2 ∩ F2 = E1

q = 3 1 2 3

We should also notice that this Schubert cell can be described with the matrix ∗ 1 0
∗ 0 1
1 0 0


so X◦

231
∼= C2.

Given a Schubert cell X◦
π we define the Schubert variety as the closure

Xπ = X◦
π,

in the Zariski topology.



Pattern avoidance

Classical patterns

An occurrence (or embedding) of a pattern p in a permutation π is classically defined as a sub-
sequence in π, of the same length as p, whose letters are in the same relative order (with respect
to size) as those in p. For example, the pattern 123 corresponds to a increasing subsequence of
three letters in a permutation. If we use the notation 1π to denote the first, 2π for the second
and 3π for the third letter in an occurrence, then we are simply requiring that 1π < 2π < 3π. If
a permutation has no occurrence of a pattern p we say that π avoids p.

Example. The permutation 32415 contains two occurrences of the pattern 123 corresponding
to the sub-words 345 and 245. It avoids the pattern 132.

Vincular patterns

In a vincular pattern (also called a generalized pattern, Babson-Steingŕımsson pattern or dashed
pattern), two adjacent letters may or may not be underlined. If they are underlined it means
that the corresponding letters in the permutation π must be adjacent.

Example. The permutation 32415 contains one occurrence of the pattern 123 corresponding to
the sub-word 245. It avoids the pattern 123. The permutation π = 324615 has one occurrence
of the pattern 2143, namely the sub-word 3265, but no occurrence of 2143, since 2 and 6 are not
adjacent in π.

These types of patterns have been studied sporadically for a very long time but were not
defined in full generality until Babson and Steingŕımsson (2000).

Bivincular patterns

This notion was generalized further in Bousquet-Mélou et al. (2010): In a bivincular pattern we
are also allowed to put restrictions on the values that occur in an embedding of a pattern. We
use two-line notation to describe these patterns. If there is a line over the letters i, i+ 1 in the
top row, it means that the corresponding letters in an occurrence must be adjacent in values.
This is best described by an example:

Example. An occurrence of the pattern 1
1
2
2
3
3 in a permutation π is an increasing subsequence of

three letters, such that the second one is larger than the first by exactly 1, or more simply 2π =
1π + 1. The permutation 32415 contains one occurrence of this bivincular pattern corresponding

to the sub-word 345. This is also an occurrence of 1
1
2
2
3
3 . The permutation avoids the bivincular

pattern 1
1
2
2
3
3 .



Barred patterns

We will only consider a single pattern of this type, but the general definition is easily inferred
from this special case. We say that a permutation π avoids the barred pattern 21354 if π avoids
the pattern 2143 (corresponding to the unbarred elements) except where that pattern is a part
of the pattern 21354. This notation for barred patterns was introduced by West (1990). It turns
out that avoiding this barred pattern is equivalent to avoiding 2143.

Example. The permutation π = 425761 avoids the barred pattern 21354 since the unique occur-
rence of 2143, as the sub-word 4276, is contained in the sub-word 42576 which is an occurrence
of 21354.

Bruhat restricted patterns

Here we recall the definition of Bruhat restricted patterns from Woo and Yong (2006). First
we need the Bruhat order on permutations in Sn, defined as follows: Given integers i < j in
J1, nK and a permutation π ∈ Sn we define w(i↔ j) as the permutation that we get from π by
swapping π(i) and π(j). For example 24153(1↔4) = 54123. We then say that π(i↔ j) covers
π if π(i) < π(j) and for every k with i < k < j we have either π(k) < π(i) or π(k) > π(j).
We then define the Bruhat order as the transitive closure of the above covering relation. We
see that in our example above that 24153(1↔4) does not cover 24153 since we have π(2) = 4.
Now, given a pattern p with a set of transpositions T = {(i`↔ j`)} we say that a permutation
π contains (p, T ), or that π contains the Bruhat restricted pattern p, if T is understood from
the context, if there is an embedding of p in π such that if any of the transpositions in T are
carried out on the embedding the resulting permutation covers π.
We should note that Bruhat restricted patterns were further generalized to intervals of patterns
in Woo and Yong (2008). We will not consider this generalization here.
Below we will show how these three types of patterns are related to one another.



Summary of results

Recall the theorem of Ryan (1987), Wolper (1989) and Lakshmibai and Sandhya (1990) that
the Schubert variety Xπ is non-singular (or smooth) if and only if π avoids the patterns 1324
and 2143. Saying that the variety Xπ is non-singular means that every local ring is regular. A
weakening of this condition is the requirement that every local ring only be a unique factorization
domain; a variety satisfying this is a factorial variety.
Bousquet-Mélou and Butler (2007) proved a conjecture stated by Yong and Woo (Bousquet-
Mélou et al., 2005, Personal communication) that factorial Schubert varieties are those that
correspond to permutations avoiding 1324 and bar-avoiding 21354. In the terminology of Woo
and Yong (2006) the bar-avoidance of the latter pattern corresponds to avoiding 2143 with
Bruhat condition (1↔ 4), or equivalently, interval avoiding [2413, 2143] in the terminology of
Woo and Yong (2008). However, as remarked by Steingŕımsson (2007), bar-avoiding 21354 is
equivalent to avoiding the vincular pattern 2143. If we summarize this in terms of vincular
patterns a striking thing becomes apparent; see the lines corresponding to smoothness and
factoriality in the table below.

Xπ is The permutation π avoids the patterns
smooth 2143 and 1324
factorial 2143 and 1324

Gorenstein
1
3
2
1
3
5
4
2
5
4 , 1

2
2
4
3
1
4
5
5
3 ; and satisfies a condition on

descents involving two infinite families of bivincular patterns

We see that requiring 1 and 4 to be adjacent in the first pattern (and thus turning it into a
vincular pattern) corresponds to weakening smoothness to factoriality.
A further weakening is to only require that the local rings of Xπ be Gorenstein local rings,
in which case we say that Xπ is a Gorenstein variety. Woo and Yong (2006) showed that Xπ

is Gorenstein if and only if it avoids two patterns with two Bruhat restrictions each, as well
as satisfying a certain condition on descents. We will translate their results into avoidance of
bivincular patterns; see below and the line corresponding to Gorensteinness in the table above.
Essentially the two bivincular patterns that are shown there are certain upgrades of the pattern
2143 while the avoidance of the pattern 1324 is weakened to avoidance of two infinite families
of bivincular patterns.



Idea behind the proof of the Gorenstein case

Woo and Yong (2006) classify those permutations π that correspond to Gorenstein Schubert
varieties Xw. They do this using embeddings of patterns with Bruhat restrictions, which we have
described above, and with a certain condition on the associated Grassmannian permutations of
w, which we will describe presently:
First, a descent in a permutation π is an integer d such that π(d) > π(d+ 1). A Grassmannian
permutation is a permutation with a unique descent. Given any permutation π we can associate
a Grassmannian permutation to each of its descents, as follows: Given a particular descent d
of π we construct the sub-word γd(π) by concatenating the right-to-left minima of the segment
strictly to the left of d+ 1 with the left-to-right maxima of the segment strictly to the right of
d. More intuitively we start with the descent π(d)π(d+ 1) and enlarge it to the left by adding
decreasing elements without creating another descent and similarly enlarge it to the right by
adding increasing elements without creating another descent. We then denote the flattening (or
standardization) of γd(π) by γ̃d(π), which is the unique permutation whose letters are in the
same relative order as γd(π).

Example. Consider the permutation π = 11|6|12|94153728|10 where we have used the symbol
| to separate two digit numbers from other numbers. For the descent at d = 4 we get γ4(π) =
694578|10 and γ̃4(π) = 3612457.

Now, given a Grassmannian permutation π in Sn with its unique descent at d we construct
its associated partition λ(π) as the partition inside a bounding box d × (n − d), with d rows
and n − d columns, whose lower border is the lattice path that starts at the lower left corner
of the bounding box and whose i-th step, for i ∈ J1, nK, is vertical if i is weakly to the left of
the position d, and horizontal otherwise. We are interested in the inner corner distance of this
partition, i.e., for every inner corner we add its distance from the left side and the distance from
the top of the bounding box. If all these inner corner distances are the same then the inner
corners all lie on the same anti-diagonal.
In Theorem 1 of Woo and Yong (2006) they show that a permutation π ∈ Sn corresponds to a
Gorenstein Schubert variety Xπ if and only if

(1) for each descent d of π, λ(γ̃d(π)) has all of its inner corners on the same anti-diagonal;
and

(2) the permutation π avoids both 31524 and 24153 with Bruhat restrictions {(1↔5), (2↔
3)} and {(1↔5), (3↔4)}, respectively.

Translating the second condition into bivincular patterns is not difficult and we omit the details
here.



Translating condition 1 of Theorem 1 of Woo and Yong (2006) is a bit more work. First, let’s see
some examples of these partitions. Here is the partition corresponding to π = 13589 ↓ 2467|10.

Then we have the partition corresponding to π = 13489 ↓ 2567|10:

The failure of this condition is easily seen to be equivalent to some partition λ of an associated
Grassmannian permutation γ̃d(π) having an outer corner that is either “too deep” or “too wide”,
as in the marked outer corner in the second figure above. This outer corner comes from the
subsequence 13489 ↓ 2567|10. This is an occurrence of the bivincular pattern

1
1
2
5
3
6
4
2
5
3
6
4
7
7 .

More generally, given a Grassmannian permutation π and an outer corner of λ(π), we say that
it is too wide if the distance upward from it to the next inner corner is smaller than the distance
to the left from it to the next inner corner. Conversely we say that an outer corner is too deep if
the distance upward from it to the next inner corner is larger than the distance to the left from
it to the next inner corner. We say that an outer corner isunbalanced if it is either too wide or
too deep. We say that an outer corner is balanced if it is not unbalanced.
If a permutation has an associated Grassmannian permutation with an outer corner that is too
wide we say that the permutation itself is too wide and similarly for too deep. If the permutation
is either too wide or too deep we say that it is unbalanced, otherwise it is balanced. It is time to
see some examples.
These properties of Grassmannian permutations can be detected with bivincular patterns, as in
the example above.



Lemma. Let π be a Grassmannian permutation.

(1) The permutation π is too wide if and only if it contains at least one of the bivincular
patterns from the infinite family

F =

(
1
1
2
4
3
2
4
3
5
5 ,

1
1
2
5
3
6
4
2
5
3
6
4
7
7 ,

1
1
2
6
3
7
4
8
5
2
6
3
7
4
8
5
9
9 , . . .

)
.

The general member of this family is of the form

1
1
2
`
·
+
·
1
·
·
·
·
·
2
·
·
·
·
·
`
k
k ,

where ` = (k − 3)/2.
(2) The permutation π is too deep if and only if it contains at least one of the bivincular

patterns from the infinite family

G =

(
1
1
2
3
3
4
4
2
5
5 ,

1
1
2
4
3
5
4
6
5
2
6
3
7
7 ,

1
1
2
5
3
6
4
7
5
8
6
2
7
3
8
4
9
9 , . . .

)
.

The general member of this family is of the form

1
1
2
`
·
+
·
1
·
·
·
·
·
2
·
·
·
·
·
`
k
k ,

where ` = (k − 1)/2.

Proof. We only consider part 1, as part 2 is proved analogously. Assume that π is a Grass-
mannian permutation that is too wide, so it has an outer corner that is too wide. Let ` be the
distance from this outer corner to the next inner corner above. Then the distance from this
outer corner to the next inner corner to the left is at least ` + 1. This allows us to construct
an increasing sequence t of length ` in π, starting at a distance at least two to the right of the
descent. We can also choose t so that every element in it is adjacent both in location and values.
Similarly we can construct an increasing sequence s of length ` in π, located strictly to the left
of the descent. We can also choose s so that every element in it is adjacent both in location
and values. This produces the required member of the family F .
Conversely, assume π contains a particular member of the family F . Then π clearly has at least
one outer corner that is too wide. �

It should be noticed that these two infinite families are obtained from one another by reverse
complement.
We have now shown that

Proposition. A permutation π is balanced if and only if every associated Grassmannian per-
mutation avoids every bivincular pattern in the two infinite families F and G in the lemma
above. �



This gives us:

Theorem. Let π ∈ Sn. The Schubert variety Xπ is Gorenstein if and only if

(1) π is balanced; and
(2) the permutation π avoids the bivincular patterns

1
3
2
1
3
5
4
2
5
4 and 1

2
2
4
3
1
4
5
5
3 .

�

I should note that with the descriptions of factorial and Gorenstein Schubert varieties given
above it is easy to verify that smoothness implies factoriality implies Gorensteinness.



Future problems

(1) Further simplification: The description of Gorenstein Schubert varieties would be nicer if
one could avoid considering the associated Grassmannian permutations altogether. This
is indeed possible if one resorts to a further generalization of patterns, so-called grid
patterns. The details of how this is achieved will be in the journal version of this paper.

(2) In between factorial and Gorenstein: What happens when we underline different letters in
the original patterns 1324 and 2143? Would this correspond to new singularity properties
of Schubert varieties.

(3) Pushing pattern avoidance further I : How far can the connection between the singularity
properties of Schubert varieties and bivincular patterns be taken? In particular, what can
be applied to other flag varieties than Flagsn(C)? One concrete question that remains
unanswered (Billey (2009)) is how to describe the singular loci of Schubert varieties of
type B; extending results of Billey and Warrington (2003) for type A.

(4) Pushing pattern avoidance further II : A permutation is vexillary if it avoids the pat-
tern 2143, Lascoux and Schützenberger (1985), or, equivalently, if its Stanley symmetric
function equals the Schur function for a particular shape. Billey and Lam (1998) define
vexillary permutations in the hyperoctahedral group Bn as those permutations that bar-
avoid 18 different patterns. It would be interesting to find a simpler description in terms
of bivincular patterns, or grid patterns.

(5) Kazhdan-Lusztig polynomials : Finally Kazhdan-Lusztig polynomials are combinatorial
objects that have been intensively studied and are notoriously difficult to compute. For
a survey, see Brenti (2002/04). They have many relations to Schubert varieties and in
particular, Kazhdan and Lusztig (1979, 1980) showed that Xπ is rationally smooth at ρ
if and only if the Kazhdan-Lusztig polynomial Pρ,π(q) is identically equal to 1. See also
Billey and Mitchell (2008). It would be interesting to see if bivincular pattern avoidance
could be used to gather more combinatorial information on these polynomials.
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