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A well-known conjecture due to Lothar Collatz from 1937 states that when the
function

f(x) =

{
x/2 if x ≡ 0 (mod 2)
3x+ 1 if x ≡ 1 (mod 2)

is iterated on an initial positive integer x we eventually reach the cycle (1, 4, 2).
Although many have tried to prove the conjecture, or find a counterexample to
it, it remains open to this day. For this work we assume that the conjecture is
true. The collection [1] contains many articles related to the conjecture and its
generalizations, and an annotated bibliography. One of the intriguing features of
this function is that, starting from some initial value x, the sequence of iterates:
x, f(x), f(f(x)), . . . , behaves at first irregularly before its eventual apparent in-
evitable decline from some power of 2 down to the three element cycle. Here we
consider the initial interesting phase of these iterations when seen from a distance,
i.e. only with regard to their relative values, and not the actual numbers produced.

For example, starting the iteration at 12 provides the sequence:

12, 6, 3, 10, 5︸ ︷︷ ︸
trace

, 16, 8, 4, 2, 1, 4, 2, 1, . . . .

The sequence of numbers up until the first power of two is the interesting phase of
the iteration, which we will call its trace. The elements of a trace are all distinct,
and viewing it from a distance we might replace each element of a trace by its rank
(i.e. the ith smallest number of the trace is replaced by i). The resulting sequence
is a permutation, and we shall call permutations produced in this manner Collatz
permutations. We denote the Collatz permutation obtained from initial value x
by C(x). So we have: C(12) = 5 3 1 4 2. It seems natural to ask: Among the
permutations of length n, how many are Collatz permutations?

Considering only those x ≤ 108 for which the length of C(x) is at most 7 produces
Table 1. As the reader will have noticed the values in the table are the Fibonacci

Length Collatz permutations
1 1
2 1
3 2
4 3
5 5
6 8
7 13

Table 1. Number of Collatz permutations of length less than 8 (experimentally).

numbers. In what follows we will explain this phenomenon and show that it persists
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through length 14. Beyond that point, excess permutations appear – and we will
explain how and why this occurs as well.

1. Types of traces

The appearance of the Fibonacci numbers in the enumeration of Collatz per-
mutations is easy to explain. The steps that occur in a trace can be: up steps
(x 7→ 3x + 1 when x is odd) denoted by u; and down steps (x 7→ x/2 when x is
even) denoted by d. Two up steps can never occur consecutively since 3x+1 is even
when x is odd. The step types in a trace can be recovered from the resulting Collatz
permutation according to the pattern of rises and descents. We call the resulting
sequence of u’s and d’s the type of the trace. As well as not containing consecutive
u’s, the last symbol in such a sequence must be a d (since there is a “hidden” u
occurring next to take us to a power of 2). As is well known, the number of such
sequences of length n is given by Fn, the nth Fibonacci number (with F1 = F2 = 1
and Fn = Fn−1 + Fn−2 for n > 1).

So, in order to show that there are at least Fn Collatz permutations of length n
it will be enough to show that any sequence of u’s and d’s satisfying the necessary
conditions above actually occurs as the type of some trace. To that end let a witness
for a type, σ, be an A = 2a such that there is a trace ending at (A−1)/3 with type
σ.

The following proposition shows that every potential type has a witness and
thereby proves that there are at least Fn Collatz permutations of length n.

Proposition 1. If a type σ contains k u’s then there is a single congruence of the
form A = c (mod 3k+1) which must be satisfied in order that a trace of type σ ends
with witness A. Consequently, there is a least witness A = 2a with a ≤ 2 ·3k, and a
general witness is of the form 2a+jd where j is a nonnegative integer and d = 2 ·3k.

Table 2 shows that there are exactly Fn Collatz permutations of length n for
n = 1, 2, . . . , 14 but for greater n there are more.

length #perms length #perms excess
1 1 15 611 1
2 1 16 989 2
3 2 17 1600 3
4 3 18 2587 3
5 5 19 4185 4
6 8 20 6771 6
7 13 21 10953 7
8 21 22 17720 9
9 34 23 28669 12
10 55 24 46383 15
11 89 25 75044 19
12 144 26 121417 24
13 233 27 196448 30
14 377 29 317850 39

Table 2. Number of Collatz permutations of length less than 30
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The first type that is associated with more than one Collatz permutation is
the type σ = uddudududduddd which has the integrality condition 2a = 16 mod
729. The smallest solution to this equation is a = 4 corresponding to the trace
9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5 and the first permutation in Figure 1.
However, the next solution to the integrality condition is a = 490, giving an initial
number with 440 digits. This initial number produces a different permutation than
the smaller initial number, and is shown in the second line in Figure 1.

3 12 7 2 10 5 13 8 15 11 6 14 9 4 1
4 12 7 2 10 5 13 8 15 11 6 14 9 3 1

Figure 1. Two different permutations associated with the type uddudududduddd

In the next section we will explain why this type gives us two different permu-
tations and when this should be expected.

2. Excess permutations

How can one type correspond to different permutations? We show that a type σ
with n symbols gives rise to n+1 linear functions. For example the type σ = dududd
gives the lines in Figure 2. We show that a witness for the type corresponds to
wherever we find a vertical line t = A where A = 2a and all the intersection points
of t = A with these lines are at integer heights. We can then read off the relative
order of the lines at this point according to the order they are crossed as we move
up the line t = A from the t-axis.

Consequently we see that if we have two potential witnesses such that there is
no intersection point between two lines in the corresponding family lying between
them, that they will determine the same permutation. On the other hand, if there
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Figure 2. Linear functions determining permutations associated
with the type dududd. The labels on each line correspond to the
point that the corresponding element would occur in a trace and
so the permutation associated with the intersections on the line
x = 28 is 4 1 6 3 7 5 2.



4 MICHAEL ALBERT, BJARKI GUDMUNDSSON AND HENNING ULFARSSON

were a witness between every pair of intersections of the lines for a type, and if these
intersections all occurred at distinct abscissae, we might have up to

(
n
2

)
witnesses

for any given type producing distinct permutations. However, we can rule out such
a wealth of witnesses quite easily as we can show that the second potential witness
always lies to the right of the rightmost intersection point among the lines. That
is:

Proposition 2. For any type σ there are at most two distinct permutations C(x)
arising from x of type σ.

Propositions 1 and 2 show that the number of Collatz permutations of length n
lies between Fn and 2Fn.

To get an exact enumeration of the Collatz permutations one would need to
understand which types are associated with two permutations. We call these excess
creating types (ET’s). Given an ET we can always create a new ET by prepending
a d. This is because the extra d does not alter the integrality condition and can
only increase the maximum intersection point. This at least shows that the number
of ET’s is non-decreasing.

3. Future work

As with so many aspects of the whole Collatz disease, a few answers just seem
to lead to more questions.

• How exactly does the number en of ET’s of length n behave? The data
above suggests that it might be something like “half Fibonacci rate” i.e. en ∼
en−2 + en−4.
• In our current dataset we always get c = 16 in the integrality conditions for

ET’s. Is this just bias in the data that we currently have? Is it a necessary
condition? Or sufficient?
• We have an extrinsic way of creating the Collatz permutations: run the

Collatz process and see what comes out. Is there an intrinsic way to rec-
ognize these permutations, beyond the obvious condition that they cannot
contain consecutive rises?
• There are several other maps similar to the Collatz map and there is also

the modified Collatz sequence (where u is replaced with ud), as well as the
Syracuse function where long down-steps are collapsed into one down-step.
How do these analyses transfer to those contexts?

For the reader who is eager to start exploring Collatz permutations, we have
a small code library supporting some basic features for working with their types.
The code is written in the Sage open-source mathematics software system, but
should run in Python with minor modifications. The code can be found at https:
//github.com/SuprDewd/CollatzPermutations.
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