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Definition (Permutation)

A permutation is considered to be an arrangement of the numbers
1,2,..., n for some positive n.
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Definition (Permutation)

A permutation is considered to be an arrangement of the numbers
1,2,..., n for some positive n.

Definition (Pattern)

A permutation, or pattern, 7 is said to be contained in an other
permutation o if sigma contains a subsequence order isomorphic to
.
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Definition

A permutation class is the set of permutations that avoid a given
set of patterns. A permutation class is denoted Av(oy,...,04,)
Example

Av(123) = {e, 1,12, 21, 123,213, 231,312,321, ...}



Staircase encoding

For any permutation m we can extract the left-to-right minima and
place them on the diagonal of a square grid.

Example
m = 659817432




Staircase encoding

For any permutation m we can extract the left-to-right minima and
place them on the diagonal of a square grid.

Example
m = 659817432




Staircase encoding

For any permutation m we can extract the left-to-right minima and
place them on the diagonal of a square grid.

Example
m = 659817432




Staircase encoding

We can then record the permutations contained in each cell. We
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Staircase encoding

We can then record the permutations contained in each cell. We

call this the staircase encoding of the permutation

Example
7 = 659817432
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Staircase encoding

Many permutations can have the same staircase encoding

Example

(o)}
101

0718432

(o))
101

0817432 659814372



Our goal

We will use the staircase encoding to describe the structure of
permutation classes and give their generating functions.
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Our goal

We will use the staircase encoding to describe the structure of
permutation classes and give their generating functions.
Given a permutation class we need to be able to

» Describe the image of the class under the staircase encoding

» Find the number of permutations in the class that correspond
to each staircase encoding in the image, i.e., the number of
ways of interleaving rows and columns
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Avoiding 123 puts constraints on which pairs of cells can contain
permutations.
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Avoiding 123 puts constraints on which pairs of cells can contain
permutations.
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» Encode those restriction by edges



Avoiding 123 puts constraints on which pairs of cells can contain
permutations.
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» Encode those restriction by edges

» Non-empty cell of encoding = independent set



Let F(x,y) be the generating function such that the coefficient of
x"y¥ is the number of independent sets of size k in a grid with n
left-to-right minima.
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Let F(x,y) be the generating function such that the coefficient of
x"yk is the number of independent sets of size k in a grid with n
left-to-right minima.

F(x,y) satisfies

xyF(x,y)*
y(F(x,y)—=1)

Foy) =1+ xF(xy) + -

The permutations in all cells of the staircase encoding must avoid
12.
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F (X, ﬁ) counts staircase encodings of 123 avoiders by size.



Points in two cells in the same row of the grid cannot create 12.
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Points in two cells in the same row of the grid cannot create 12.
We say that the rows are decreasing.
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Points in two cells in the same row of the grid cannot create 12.
We say that the rows are decreasing.

77777777V 77777777777777777
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70777777 A
A R 1777777
R ey 117107777
A 222022075
R A
7777777 0227222727 2727277

Similarly columns are said to be decreasing.
One way of interleaving = One 123-avoiders by staircase
encoding.



The staircase encoding is a bijection if restricted to Av(123).
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The staircase encoding is a bijection if restricted to Av(123).

321 1 e
21 e

Theorem
The generating function of Av(123) is F (x, L)

1—x
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We want to replace 123 with two new patterns:

ry = 2314 cy, = 3124

» Avoiding r, = decreasing rows
» Avoiding ¢, = decreasing columns

> Staircase encoding is a bijection when restricted to
Av(2314,3124)

» Same constraint on the graph for Av(123)



Theorem
The generating function of Av(2314,3124) is

F(x,B(x) —1)

where B(x) is the generating function of Av(2314,3124).



Theorem
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Theorem
Let P be a set of skew-indecomposable permutations. The
generating function of Av(2314,3124,1 @ P) is

F(x,B(x) = 1)
where B(x) is the generating function of Av(2314,3124, P).

Example
A(x), the generation function of Av(2314,3124) satisfies

A(x) = F(x, A(x) — 1).

Solving the equation gives

Alx) = 3—x—+v1—6x+x2
- > ,
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We look at avoiders of r, = 2314, ¢, = 3124 and ¢4y = 3142.
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Let G(x, y) be the generating function for the independent sets of
those graph.
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We look at avoiders of r, = 2314, ¢, = 3124 and ¢4y = 3142.
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Let G(x, y) be the generating function for the independent sets of

those graph.



Theorem
Let P be a set of skew-indecomposable permutations. Then the
generating function for

Av(ry, cu, cq, 1 & P) = Av(2314,3124,3142,1 & P)

is
G(x,B(x) —1)
where B(x) is the generating function for Av(2314,3124,3124, P).
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ry = 2413




2134

rg = 2413




rg = 2413




rg = 2413

Remark
Note that all the diagonal cells are disconnected from the graph.
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H(x,y,z,5) =14+ xH(x,y,z,s) +

yzsH(x,y, z,s)
1-s(y+1)
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yzsH(x,y, z,s)

H(x,y,z,5) =14+ xH(x,y,z,s) +
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Theorem
The generating function of Av(2134,2413 ) is

H <xB(x), ﬁ B(x) — 1,xC(x)>

where

» B(x) is the generating function of Av(2134,2413 ),
» C(x) is the generating function of Av(213 )



We show that for a set of patterns P satisfying: for all 7 € P

» 7 is skew-indecomposable,

» 7 avoids

» 7 contains 171

Theorem

and

or m = a ® 1 with o skew-indecomposable.

The generating function of Av(2134,2413,1® P) is

where

H <xB(x), ﬁ B(x) — 1,xC(x)>

» B(x) is the generating function of Av(2134,2413, , P),
» C(x) is the generating function of Av(213, , P*)



Example
A(x), the generating function of Av(2134,2413) satisfies

A(x) = H <XA(X), A -1 1= vizax V21_4X - 1)

The equation can be solved explicitly.
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Final example

A(x) is the generating function of Av(2314,3124,13524,12435).
A(x) = F(x,B(x) — 1)

where B(x) is the generating function of
Av(2314,3124, 2413, 1324).
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Final example

A(x) is the generating function of Av(2314,3124,13524,12435).
A(x) = F(x,B(x) — 1)

where B(x) is the generating function of
Av(2314,3124, 2413, 1324).

B(x) = G(x,C(x) — 1)
where C(x) is the generating function of
Av(2314,3124,2413,213) = Av(213)

Computing A(x) gives the same generating function as for the class
Av(2413,2134).



Basis that can be handled

Basis Subclasses | References

2314,3124 8 Schréder number

2413,3142 8 Schréder number
2314,3124,2413,3142 64 Atkinson & Stitt (2002)
2314,3124,2413 8 Mansour & Shattuck (2017)
2314,3124,3142* 8 Mansour & Shattuck (2017)
2413,3142,2314 8 Callan, Mansour & Shattuck (2017)
2413,3142,3124* 8 Callan, Mansour & Shattuck (2017)
2413,3124 4 Albert, Atkinson & Vatter (2014)
2314,3142 4 Albert, Atkinson & Vatter (2014)
2134,2413 2 Albert, Atkinson & Vatter (2014)

*Symmetry of an other class.
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