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Definition (Permutation)
A permutation is considered to be an arrangement of the numbers
1, 2, . . . , n for some positive n.

Definition (Pattern)
A permutation, or pattern, π is said to be contained in an other
permutation σ if sigma contains a subsequence order isomorphic to
π.
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Definition
A permutation class is the set of permutations that avoid a given
set of patterns. A permutation class is denoted Av(σ1, . . . , σn)

Example

Av(123) = {ε, 1, 12, 21, 123////, 213, 231, 312, 321, . . .}



Staircase encoding

For any permutation π we can extract the left-to-right minima and
place them on the diagonal of a square grid.
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Staircase encoding

Many permutations can have the same staircase encoding

Example
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Our goal

We will use the staircase encoding to describe the structure of
permutation classes and give their generating functions.

Given a permutation class we need to be able to

I Describe the image of the class under the staircase encoding
I Find the number of permutations in the class that correspond

to each staircase encoding in the image, i.e., the number of
ways of interleaving rows and columns
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Permutations avoiding 123



Avoiding 123 puts constraints on which pairs of cells can contain
permutations.

I Encode those restriction by edges
I Non-empty cell of encoding = independent set
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Let F (x , y) be the generating function such that the coefficient of
xnyk is the number of independent sets of size k in a grid with n
left-to-right minima.

F (x , y) satisfies

F (x , y) = 1 + xF (x , y) +
xyF (x , y)2

1− y(F (x , y)− 1)
.

The permutations in all cells of the staircase encoding must avoid
12.
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F
(
x , x

1−x

)
counts staircase encodings of 123 avoiders by size.



Points in two cells in the same row of the grid cannot create 12.

We say that the rows are decreasing.

Similarly columns are said to be decreasing.
One way of interleaving =⇒ One 123-avoiders by staircase
encoding.
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The staircase encoding is a bijection if restricted to Av(123).
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Avoiding 2314 and 3124



We want to replace 123 with two new patterns:

ru = 2314 cu = 3124

I Avoiding ru =⇒ decreasing rows
I Avoiding cu =⇒ decreasing columns
I Staircase encoding is a bijection when restricted to

Av(2314, 3124)

I Same constraint on the graph for Av(123)
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Theorem
The generating function of Av(2314, 3124) is

F (x ,B(x)− 1)

where B(x) is the generating function of Av(2314, 3124).

Example
A(x), the generation function of Av(2314, 3124) satisfies

A(x) = F (x ,A(x)− 1).

Solving the equation gives

A(x) =
3− x −

√
1− 6x + x2

2
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Theorem
Let P be a set of skew-indecomposable permutations. The
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New cores



We look at avoiders of ru = 2314, cu = 3124 and cd = 3142.

Let G (x , y) be the generating function for the independent sets of
those graph.
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We look at avoiders of ru = 2314, cu = 3124 and cd = 3142.

Let G (x , y) be the generating function for the independent sets of
those graph.



Theorem
Let P be a set of skew-indecomposable permutations. Then the
generating function for

Av(ru, cu, cd , 1⊕ P) = Av(2314, 3124, 3142, 1⊕ P)

is
G (x ,B(x)− 1)

where B(x) is the generating function for Av(2314, 3124, 3124,P).



Avoiding 2134 and 2413



2134

rd = 2413

Remark
Note that all the diagonal cells are disconnected from the graph.



2134

rd = 2413

Remark
Note that all the diagonal cells are disconnected from the graph.



2134

rd = 2413

Remark
Note that all the diagonal cells are disconnected from the graph.



2134

rd = 2413

Remark
Note that all the diagonal cells are disconnected from the graph.



2134

rd = 2413

Remark
Note that all the diagonal cells are disconnected from the graph.



2134

rd = 2413

Remark
Note that all the diagonal cells are disconnected from the graph.



H

s y ′

s y ′

s y ′

s y ′

s

z

I y for substitution with
Av+(12), y ′ = y + 1

I z for substitution with
Av+(2413, 2134) (with
maximum remove)

I s for substitution with
Av(213)

I x for substitution with
Av(2413, 2134)

yzs

1
1−s(y+1)

H(x , y , z , s) = 1 + xH(x , y , z , s) +
yzsH(x , y , z , s)

1− s(y + 1)



H

s y ′

s y ′

s y ′

s y ′

s

z

I y for substitution with
Av+(12), y ′ = y + 1

I z for substitution with
Av+(2413, 2134) (with
maximum remove)

I s for substitution with
Av(213)

I x for substitution with
Av(2413, 2134)

yzs

1
1−s(y+1)

H(x , y , z , s) = 1 + xH(x , y , z , s) +
yzsH(x , y , z , s)

1− s(y + 1)



H

s y ′

s y ′

s y ′

s y ′

s

z

I y for substitution with
Av+(12), y ′ = y + 1

I z for substitution with
Av+(2413, 2134) (with
maximum remove)

I s for substitution with
Av(213)

I x for substitution with
Av(2413, 2134)

yzs

1
1−s(y+1)

H(x , y , z , s) = 1 + xH(x , y , z , s) +
yzsH(x , y , z , s)

1− s(y + 1)



H

s y ′

s y ′

s y ′

s y ′

s

z

I y for substitution with
Av+(12), y ′ = y + 1

I z for substitution with
Av+(2413, 2134) (with
maximum remove)

I s for substitution with
Av(213)

I x for substitution with
Av(2413, 2134)

yzs

1
1−s(y+1)

H(x , y , z , s) = 1 + xH(x , y , z , s) +
yzsH(x , y , z , s)

1− s(y + 1)



H

s y ′

s y ′

s y ′

s y ′

s

z

I y for substitution with
Av+(12), y ′ = y + 1

I z for substitution with
Av+(2413, 2134) (with
maximum remove)

I s for substitution with
Av(213)

I x for substitution with
Av(2413, 2134)

yzs

1
1−s(y+1)

H(x , y , z , s) = 1 + xH(x , y , z , s) +
yzsH(x , y , z , s)

1− s(y + 1)



H

s y ′

s y ′

s y ′

s y ′

s

z

I y for substitution with
Av+(12), y ′ = y + 1

I z for substitution with
Av+(2413, 2134) (with
maximum remove)

I s for substitution with
Av(213)

I x for substitution with
Av(2413, 2134)

yzs

1
1−s(y+1)

H(x , y , z , s) = 1 + xH(x , y , z , s) +
yzsH(x , y , z , s)

1− s(y + 1)



H

s y ′

s y ′

s y ′

s y ′

s

z

I y for substitution with
Av+(12), y ′ = y + 1

I z for substitution with
Av+(2413, 2134) (with
maximum remove)

I s for substitution with
Av(213)

I x for substitution with
Av(2413, 2134)

yzs

1
1−s(y+1)

H(x , y , z , s) = 1 + xH(x , y , z , s) +
yzsH(x , y , z , s)

1− s(y + 1)



We show that for a set of patterns P satisfying: for all π ∈ P

I π is skew-indecomposable,

I π avoids and

I π contains or π = α⊕ 1 with α skew-indecomposable.

Theorem
The generating function of Av(2134, 2413

, 1⊕ P
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I C (x) is the generating function of Av(213
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We show that for a set of patterns P satisfying: for all π ∈ P

I π is skew-indecomposable,

I π avoids and

I π contains or π = α⊕ 1 with α skew-indecomposable.

Theorem
The generating function of Av(2134, 2413, 1⊕ P) is

H
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where
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Example
A(x), the generating function of Av(2134, 2413) satisfies

A(x) = H

(
xA(x),

x

1− x
,A(x)− 1,

1−
√
1− 4x
2

− 1
)

The equation can be solved explicitly.



Conclusion



Final example

A(x) is the generating function of Av(2314, 3124, 13524, 12435).

A(x) = F (x ,B(x)− 1)

where B(x) is the generating function of
Av(2314, 3124, 2413, 1324).

B(x) = G (x ,C (x)− 1)

where C (x) is the generating function of
Av(2314, 3124, 2413, 213) = Av(213)
Computing A(x) gives the same generating function as for the class
Av(2413, 2134).
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Basis that can be handled

Basis Subclasses References
2314, 3124 8 Schröder number
2413, 3142 8 Schröder number
2314, 3124, 2413, 3142 64 Atkinson & Stitt (2002)
2314, 3124, 2413 8 Mansour & Shattuck (2017)
2314, 3124, 3142* 8 Mansour & Shattuck (2017)
2413, 3142, 2314 8 Callan, Mansour & Shattuck (2017)
2413, 3142, 3124* 8 Callan, Mansour & Shattuck (2017)
2413, 3124 4 Albert, Atkinson & Vatter (2014)
2314, 3142 4 Albert, Atkinson & Vatter (2014)
2134, 2413 2 Albert, Atkinson & Vatter (2014)

*Symmetry of an other class.
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