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Staircase encoding

Many different permutations can have the same staircase encoding

Example

659814372 and 7" = 659718432

/
s

have the same staircase encoding has the permutation .




Our goal

We will use the staircase encoding to describe the structure of
permutation classes and give their generating functions.
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Our goal

We will use the staircase encoding to describe the structure of
permutation classes and give their generating functions.
Given a permutation class we need to be able to

» Describe the image of the class under the staircase encoding

» Find the number of permutations in the class that correspond
to each staircase encoding in the image, i.e., the number of
ways of interleaving rows and columns
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123 avoiders

We start with the example of Av(123) from Bean, Tannock and
Ulfarsson in Pattern avoiding permutations and independent sets in
graphs.
Definition
We say that a cell of the staircase encoding is active if it contains a
non-empty permutation.
To describe all the staircase encodings that can be obtained from
123 avoiders we follow a two step process

1. Find all the possible sets of active cells for a staircase encoding

2. Find the permutations that can occupy any of those cells



Sets of active cells

Avoiding 123 puts constraints on which pairs of cells can contain
permutations.
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Sets of active cells

Avoiding 123 puts constraints on which pairs of cells can contain
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We encode those restriction by edges of a graph
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Sets of active cells

An independent set of the graph defines a subset of cells that
contain permutations in the staircase encoding of a 123 avoider.
Let F(x,y) be the generating function such that the coefficient of
x"yk is the number of independent sets of size k in a grid with n
left-to-right minima. F(x,y) satisfies

xyF(x,y)?
y(F(x,y) =1)

F(x,y) =1+ xF(x,y) + .

Finally, the permutations in all cells of the staircase encoding must
avoid 12.



From encoding to permutations

Points in two cells in the same row of the grid cannot create 12.
Hence, all points of the left cell are above the points of the right
cell. We say that the rows are decreasing.
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From encoding to permutations

Points in two cells in the same row of the grid cannot create 12.

Hence, all points of the left cell are above the points of the right
cell. We say that the rows are decreasing.
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From encoding to permutations

Points in two cells in the same row of the grid cannot create 12.
Hence, all points of the left cell are above the points of the right
cell. We say that the rows are decreasing.
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From encoding to permutations

Points in two cells in the same row of the grid cannot create 12.
Hence, all points of the left cell are above the points of the right
cell. We say that the rows are decreasing.
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Similarly columns are said to be decreasing.

For each staircase encoding, only one permutation in Av(123) is
mapped to it by the staircase encoding because only one
interleaving is possible.



The number of staircase encodings for 123 avoiders of length n is
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The number of staircase encodings for 123 avoiders of length n is
given by the generating function F (x

» T—x

The staircase encoding is a bijection for Av(123).
Theorem
The generating function of Av(123) is F ( X, 75 X)

Remark
A symmetric results can be stated for 132 avoiders.
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Row-up and column-up patterns

We want to replace 123 with two new patterns: r, = 2314 and
c, = 3124,

ru Cu

We use this notation since r, forbids increasing sequences along
rows while ¢, forbids increasing sequences along columns.

Hence, all permutations in Av(2314,3124) have a different
staircase encoding.



Sets of active cells

If we look at the left-to-right minima of the patterns as left-to-right
minima on the grid we see the same constraints for sets of active
cells as in the 123 case.
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Sets of active cells

If we look at the left-to-right minima of the patterns as left-to-right
minima on the grid we see the same constraints for sets of active
cells as in the 123 case.

loo

F(x,y) also describes the independent sets.
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Set of active cells

Cells avoid 2314 and 3124.
Each staircase encoding gives a permutation in the class
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Set of active cells

Cells avoid 2314 and 3124.
Each staircase encoding gives a permutation in the class
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Enumeration

Theorem
Let P be a set of skew-indecomposable permutations. The
generating function of Av(2314,3124,1® P) is

F(x,B(x)—1)
where B(x) is the generating function of Av(2314,3124, P).

Example
The generating function of Av(2314,3124,1234) is

F<x,1_m—1>

2x

since Av(2314,3124,123) = Av(123).



Enumeration

Example
A(x), the generation function of Av(2314,3124) satisfies

A(x) = F(x,A(x) — 1).
Solving the equation gives

3—x—+v1—6x+x2

A(x) = -

Remark
A symmetric results can be derived for ry = 2143 and ¢y = 3142
and sum-indecomposable patterns.
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We look at avoiders of r, = 2314, ¢, = 3124 and ¢4y = 3142.
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= 3124 and ¢4 = 3142.

2314, ¢,
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= 3124 and ¢4 = 3142.

2314, ¢,

We look at avoiders of r,
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Theorem
Let P be a set of skew-indecomposable permutations. Then the
generating function for

Av(ry, cu, g, 1@ P) = Av(2314,3124,3142,1 & P)

is
G(x,B(x)—1)
where B(x) is the generating function for Av(2314,3124,3124, P).



Theorem
Let P be a set of skew-indecomposable permutations. Then the
generating function for

AV(ry, Cu, ca, 1 @ P) = Av(2314,3124,3142,1 @ P)
is
G(x,B(x)—1)
where B(x) is the generating function for Av(2314,3124,3124, P).

Remark
A symmetric version can be done for r,, c,, cq4.
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Regarding the bases Av(ry, cq4, c,) and Av(ry, cq, r,) some extra
care is needed since ¢, and r, are sum-indecomposable.

50555255555555%,
) 150545050450545%
505050250505255,
£505055250550505%

However this can be handled by
» tracking the number of rows/columns of the independent set

» using a different permutation class for the leftmost/topmost
cell in each row
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ry = 2413

Remark
Note that all the diagonal cells are disconnected from the graph.
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H(x,y,z,5) =14+ xH(x,y,z,s) +

yzsH(x,y, z,s)
1-s(y+1)
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H(x,y,z,5) =14+ xH(x,y,z,s) +

yzsH(x,y, z,s)
1-s(y+1)
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H(x,y,z,5) =14+ xH(x,y,z,s) +
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We show that for a set of patterns P satisfying: for all 7 € P

» 7 is skew-indecomposable,

» 7 avoids

» 7 contains 171

Theorem

and

or m = a ® 1 with o skew-indecomposable.

The generating function of Av(2134,2413,1® P) is

where

H <xB, X _B- 1,xc>

1—x

» B(x) is the generating function of Av(2134,2413, , P),
» C(x) is the generating function of Av(213, , P*),



Example
A(x), the generating function of Av(2134,2413) satisfies

A(x) = H <XA(X), A -1 1= vizax V21_4X - 1)

The equation can be solved explicitly.



Unbalanced Wilf-equivalence

A(x) is the generating function of Av(2314,3124,13524,12435).
A(x) = F(x,B(x) — 1)

where B(x) is the generating function of
Av(2314,3124, 2413, 1324).
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Unbalanced Wilf-equivalence

A(x) is the generating function of Av(2314,3124,13524,12435).
A(x) = F(x,B(x) — 1)

where B(x) is the generating function of
Av(2314,3124, 2413, 1324).

B(x) = G(x,C(x) — 1)
where C(x) is the generating function of
Av(2314,3124,2413,213) = Av(213)

Computing A(x) gives the same generating function as for the class
Av(2413,2134).
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Basis that can be handled

Basis Subclasses | References

2314,3124 8 Schréder number

2413,3142 8 Schréder number
2314,3124,2413,3142 64 Atkinson & Stitt (2002)
2314,3124,2413 8 Mansour & Shattuck (2017)
2314,3124,3142* 8 Mansour & Shattuck (2017)
2413,3142,2314 8 Callan, Mansour & Shattuck (2017)
2413,3142,3124* 8 Callan, Mansour & Shattuck (2017)
2413,3124 4 Albert, Atkinson & Vatter (2014)
2314,3142 4 Albert, Atkinson & Vatter (2014)
2134,2413 2 Albert, Atkinson & Vatter (2014)

*Symmetry of an other class.
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Future work

» Using length five patterns with 3 left-to-right minima
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» Consider also the right-to-left maxima
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» Other Wilf-equivalences and bijective proof



	Permutations avoiding 123
	Avoiding 2314 and 3124
	New cores
	Avoiding 2134 and 2413
	Conclusion

