Occurence graphs 00

General results

Occurrence graphs of patterns in permutations (ísl. *Tilvikanet mynstra í umröðunum*) Stærðfræði á Íslandi 2015

Bjarni Jens Kristinsson, Henning Ulfarsson

University of Iceland, University of Reykjavik

October 31, 2015

Occurence graphs

General results

Table of Contents

Background Graphs Permutations

Occurence graphs

Definition of occurence graphs

General results

Classical subsets An example and a non-example

General results

Simple graphs

General results 00 0

Simple graphs

A simple graph (isl. einfalt net) G consists of

• a set of vertices (ísl. hnútar) V and

General results 00 0

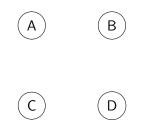
Simple graphs

- a set of vertices (isl. hnútar) V and
- a set of edges (isl. leggir) E.

General results 00 0

Simple graphs

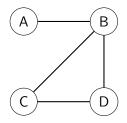
- a set of vertices (isl. hnútar) V and
- a set of edges (isl. leggir) E.



General results 00 0

Simple graphs

- a set of vertices (isl. hnútar) V and
- a set of edges (isl. leggir) E.



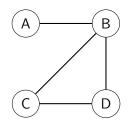
General results 00 0

Subgraphs

Occurence graphs 00

General results

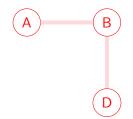
Subgraphs



Occurence graphs 00

General results 00 0

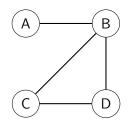
Subgraphs



Occurence graphs 00

General results

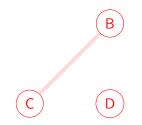
Subgraphs



Occurence graphs

General results 00 0

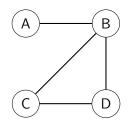
Subgraphs



Occurence graphs 00

General results

Subgraphs



Occurence graphs 00

General results 00 0

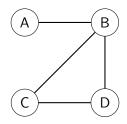
Subgraphs

Occurence graphs

General results

Subgraphs

- A *subgraph* (isl. *hlutnet*) is a subset of the graph.
- An *induced subgraph* (isl. *spannandi hlutnet*) is the subgraph induced by a subset of vertices with corresponding edges.

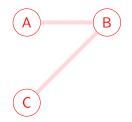


Occurence graphs

General results 00 0

Subgraphs

- A *subgraph* (isl. *hlutnet*) is a subset of the graph.
- An *induced subgraph* (isl. *spannandi hlutnet*) is the subgraph induced by a subset of vertices with corresponding edges.



Mynd: The induced subgraph of the vertices A,B,C

Occurence graphs 00

General results

Definition of Permutations

• We let $\llbracket 1, n \rrbracket$ denote the integer interval $\{1, \ldots, n\}$.

Definition of Permutations

- We let $\llbracket 1, n \rrbracket$ denote the integer interval $\{1, \ldots, n\}$.
- A permutation of length n (isl. umröðun að lengd n) is a bijective function σ: [[1, n]] → [[1, n]].

Definition of Permutations

- We let $\llbracket 1, n \rrbracket$ denote the integer interval $\{1, \ldots, n\}$.
- A permutation of length n (isl. umröðun að lengd n) is a bijective function σ: [[1, n]] → [[1, n]].
- We denote the permutation with $\sigma = \sigma(1)\sigma(2)\cdots\sigma(n)$.

Definition of Permutations

- We let $\llbracket 1, n \rrbracket$ denote the integer interval $\{1, \ldots, n\}$.
- A permutation of length n (isl. umröðun að lengd n) is a bijective function σ: [[1, n]] → [[1, n]].
- We denote the permutation with $\sigma = \sigma(1)\sigma(2)\cdots\sigma(n)$.
- The set of permutations (isl. mengi allra umraðana) of length n is denoted by 𝔅_n. The set of all permutations is 𝔅 = ∪^{+∞}_{n=0}𝔅_n.

Occurence graphs

General results 00 0

Grid plot

A *grid plot* or *grid representation* is a visualization of a permutation.

Occurence graphs 00

General results 00 0

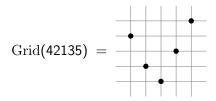
Grid plot

A grid plot or grid representation is a visualization of a permutation. For example, let $\pi = 42135$, then

General results 00 0

Grid plot

A grid plot or grid representation is a visualization of a permutation. For example, let $\pi = 42135$, then



Occurence graphs 00

General results 00 0

Pattern standardisation

The *standardisation of a string* (isl. *stöðlun strengjar*) is a "flattening" of the string to make it a permutation.

Occurence graphs 00

General results

Pattern standardisation

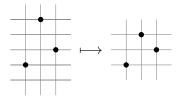
The *standardisation of a string* (isl. *stöðlun strengjar*) is a "flattening" of the string to make it a permutation.

Occurence graphs 00

General results 00 0

Pattern standardisation

The *standardisation of a string* (isl. *stöðlun strengjar*) is a "flattening" of the string to make it a permutation.

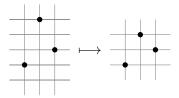


Occurence graphs 00

General results

Pattern standardisation

The *standardisation of a string* (isl. *stöðlun strengjar*) is a "flattening" of the string to make it a permutation.



For example st(253) = 132 and st(132) = 132.

General results 00 0

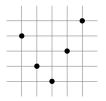
Pattern containment and occurrences

We say that a permutation π contains (isl. inniheldur) a smaller permutation p (called a *(classical permutation) pattern*) (isl. (*klassiskt umröðunar-)mynstur*) if there exists a substring of π such that the standardisation of it is equal to p.

General results 00 0

Pattern containment and occurrences

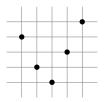
We say that a permutation π contains (isl. inniheldur) a smaller permutation p (called a *(classical permutation) pattern*) (isl. (*klassiskt umröðunar-)mynstur*) if there exists a substring of π such that the standardisation of it is equal to p.



General results 00 0

Pattern containment and occurrences

We say that a permutation π contains (isl. inniheldur) a smaller permutation p (called a *(classical permutation) pattern*) (isl. (*klassiskt umröðunar-)mynstur*) if there exists a substring of π such that the standardisation of it is equal to p.

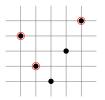


For example, let $\pi = 42135$.

General results

Pattern containment and occurrences

We say that a permutation π contains (isl. inniheldur) a smaller permutation p (called a *(classical permutation) pattern*) (isl. (*klassiskt umröðunar-)mynstur*) if there exists a substring of π such that the standardisation of it is equal to p.

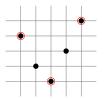


For example, let $\pi = 42135$. π contains p = 213 because st(425) = 213,

General results

Pattern containment and occurrences

We say that a permutation π contains (isl. inniheldur) a smaller permutation p (called a *(classical permutation) pattern*) (isl. (*klassiskt umröðunar-)mynstur*) if there exists a substring of π such that the standardisation of it is equal to p.

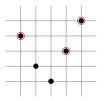


For example, let $\pi = 42135$. π contains p = 213 because st(425) = 213, st(415) = 213,

General results

Pattern containment and occurrences

We say that a permutation π contains (isl. inniheldur) a smaller permutation p (called a *(classical permutation) pattern*) (isl. (*klassískt umröðunar-)mynstur*) if there exists a substring of π such that the standardisation of it is equal to p.

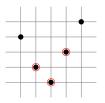


For example, let $\pi = 42135$. π contains p = 213 because st(425) = 213, st(415) = 213, st(435) = 213,

General results

Pattern containment and occurrences

We say that a permutation π contains (isl. inniheldur) a smaller permutation p (called a *(classical permutation) pattern*) (isl. (*klassískt umröðunar-)mynstur*) if there exists a substring of π such that the standardisation of it is equal to p.

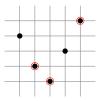


For example, let $\pi = 42135$. π contains p = 213 because st(425) = 213, st(415) = 213, st(435) = 213, st(213) = 213 and

General results

Pattern containment and occurrences

We say that a permutation π contains (isl. inniheldur) a smaller permutation p (called a *(classical permutation) pattern*) (isl. (*klassiskt umröðunar-)mynstur*) if there exists a substring of π such that the standardisation of it is equal to p.



For example, let $\pi = 42135$. π contains p = 213 because st(425) = 213, st(415) = 213, st(435) = 213, st(213) = 213 and st(215) = 213.

Pattern containment and occurrences (continued)

• The substrings 425, 415, 435, 213 and 215 are the *occurrences* (isl. *tilvik*) of 213 in 42135.

Pattern containment and occurrences (continued)

- The substrings 425, 415, 435, 213 and 215 are the *occurrences* (isl. *tilvik*) of 213 in 42135.
- The corresponding *index sets* (isl. *visamengi*) are $\{1, 2, 5\}$, $\{1, 3, 5\}$, $\{1, 4, 5\}$, $\{2, 3, 4\}$, $\{2, 3, 5\}$.

Pattern containment and occurrences (continued)

- The substrings 425, 415, 435, 213 and 215 are the *occurrences* (isl. *tilvik*) of 213 in 42135.
- The corresponding *index sets* (isl. *visamengi*) are $\{1, 2, 5\}$, $\{1, 3, 5\}$, $\{1, 4, 5\}$, $\{2, 3, 4\}$, $\{2, 3, 5\}$.
- The set of all index sets of p = 213 in π = 42135 is the occurrence set (isl. tilvikamengi) of p in π, denoted with V_p(π).

Occurence graphs

General results

Background Graphs Permutatior

Occurence graphs Definition of occurence graphs

General results Classical subsets

An example and a non-example

Occurence graphs •0 General results 00 0

Definition of occurence graphs

For a pattern $p \in \mathfrak{S}_k$ and for a permutation $\pi \in \mathfrak{S}_n$ we define the *occurrence graph* (isl. *tilvikanet*) $G_p(\pi)$ of p in π in the following way:

Definition of occurence graphs

For a pattern $p \in \mathfrak{S}_k$ and for a permutation $\pi \in \mathfrak{S}_n$ we define the *occurrence graph* (isl. *tilvikanet*) $G_p(\pi)$ of p in π in the following way:

• The set of vertices is $V_p(\pi)$, the occurrence set of p in π .

Definition of occurence graphs

For a pattern $p \in \mathfrak{S}_k$ and for a permutation $\pi \in \mathfrak{S}_n$ we define the *occurrence graph* (isl. *tilvikanet*) $G_p(\pi)$ of p in π in the following way:

- The set of vertices is $V_p(\pi)$, the occurrence set of p in π .
- uv is an edge in $G_p(\pi)$ if the vertices $u = \{u_1, \ldots, u_k\}$ and $v = \{v_1, \ldots, v_k\}$ in $V_p(\pi)$ differ by exactly one element, i.e. if

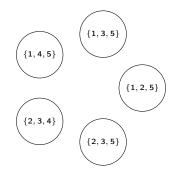
$$|u \setminus v| = |v \setminus u| = 1.$$

Occurence graphs o General results 00 0

An example of an occurrence graph In previous example we derived the occurrence set $V_{213}(42135)$.

Occurence graphs o
• General results 00 0

An example of an occurrence graph In previous example we derived the occurrence set $V_{213}(42135)$.

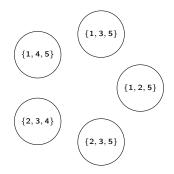


Occurence graphs

General results

An example of an occurrence graph

In previous example we derived the occurrence set $V_{213}(42135)$. We compute the edges of $G_{213}(42135)$ by comparing the vertices two at a time to see if the sets differ by exactly one element. The graph is shown below:

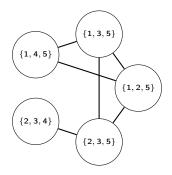


Occurence graphs

General results

An example of an occurrence graph

In previous example we derived the occurrence set $V_{213}(42135)$. We compute the edges of $G_{213}(42135)$ by comparing the vertices two at a time to see if the sets differ by exactly one element. The graph is shown below:



Occurence graphs

General results $\circ\circ$

Background Graphs Permutatior

Occurence graphs Definition of occurence graphs

General results

Classical subsets An example and a non-example

Occurence graphs 00

Hereditary property

We call a property of a graph G hereditary (isl. arfgengur eiginleiki) if it is invariant under isomorphisms and for every subgraph of G the property also holds.

Occurence graphs 00

General results

Hereditary property

We call a property of a graph G hereditary (isl. arfgengur eiginleiki) if it is invariant under isomorphisms and for every subgraph of G the property also holds.

For example the properties of being a forest, bipartite, planar or k-colorable are hereditary properties. The property of being a tree is not hereditary.

Occurence graphs 00

General results

Hereditary property

We call a property of a graph G hereditary (isl. arfgengur eiginleiki) if it is invariant under isomorphisms and for every subgraph of G the property also holds.

For example the properties of being a forest, bipartite, planar or k-colorable are hereditary properties. The property of being a tree is not hereditary.

Let c be a property of graphs and let

 $\mathscr{G}_{p,c} = \{\pi \in \mathfrak{S} \colon \mathcal{G}_p(\pi) \text{ has property } c\}.$

Occurence graphs 00

General results ○● ○

Main theorem

The set of all permutations that avoid p is Av(p). More generally for a set of patterns M we define

$$\operatorname{Av}(M) = \bigcap_{p \in M} \operatorname{Av}(p).$$

Occurence graphs 00

General results $\circ \bullet$

Main theorem

The set of all permutations that avoid p is Av(p). More generally for a set of patterns M we define

$$\operatorname{Av}(M) = \bigcap_{p \in M} \operatorname{Av}(p).$$

Theorem

Let c be a hereditary property of graphs. For any pattern p the set $\mathscr{G}_{p,c}$ is a permutation class, i.e. there is a set of classical permutations patterns M such that

$$\mathscr{G}_{p,c} = \operatorname{Av}(M).$$

Occurence graphs 00

Forests and trees

Theorem

Let c be the property of being a forest and p = 12. Then

 $\mathscr{G}_{p,c} = \operatorname{Av}(123, 1432, 2143, 3214).$

Occurence graphs 00

Forests and trees

Theorem Let c be the property of being a forest and p = 12. Then

$$\mathscr{G}_{p,c} = \operatorname{Av}(123, 1432, 2143, 3214).$$

Theorem

The number of permutations of length *n* in $\mathscr{G}_{12,\text{tree}}$ is $(n-1)^2$.