Occurrence graphs of patterns in permutations

Permutation Patterns 2016

Bjarni Jens Kristinsson, Henning Ulfarsson

June 2016

Table of Contents

- 1. Background
 - ▶ Graphs
 - Permutations
- 2. Occurence graphs
 - ▶ Definition of occurence graphs
- 3. Some results
 - ▶ Main theorem
 - Examples
 - ▶ Non-examples

Graphs

Simple graphs

A simple graph G consists of

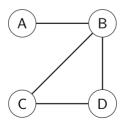
▶ a set of vertices V and

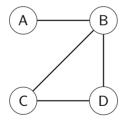
- ▶ a set of *vertices* V and
- ▶ a set of *edges E*

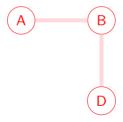
- ▶ a set of *vertices* V and
- ▶ a set of *edges E*
- ▶ no loops, or multiple edges

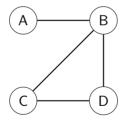
- ▶ a set of *vertices* V and
- ▶ a set of edges E
- ▶ no loops, or multiple edges

- ▶ a set of *vertices* V and
- ▶ a set of edges E
- ▶ no loops, or multiple edges



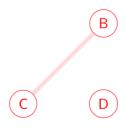


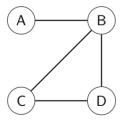




Graphs

Subgraphs

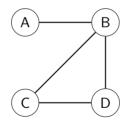




▶ A *subgraph* is a subset of the graph

C

- ▶ A *subgraph* is a subset of the graph
- An induced subgraph is the subgraph induced by a subset of vertices with corresponding edges



- ▶ A *subgraph* is a subset of the graph
- ► An *induced subgraph* is the subgraph induced by a subset of vertices with corresponding edges

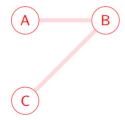


Figure: The induced subgraph of the vertices A,B,C

Grid plot

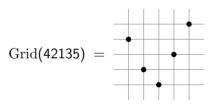
A grid plot or grid representation is a visualization of a permutation.

Grid plot

A grid plot or grid representation is a visualization of a permutation. For example, let $\pi=42135$, then

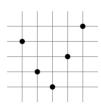
Grid plot

A grid plot or grid representation is a visualization of a permutation. For example, let $\pi = 42135$, then

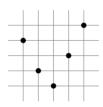


We say that a permutation π contains a smaller permutation p (called a (classical permutation) pattern) if there exists a substring of π such that the standardisation of it is equal to p

We say that a permutation π contains a smaller permutation p (called a (classical permutation) pattern) if there exists a substring of π such that the standardisation of it is equal to p

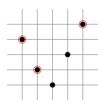


We say that a permutation π contains a smaller permutation p (called a (classical permutation) pattern) if there exists a substring of π such that the standardisation of it is equal to p



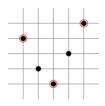
For example, let $\pi = 42135$.

We say that a permutation π contains a smaller permutation p (called a (classical permutation) pattern) if there exists a substring of π such that the standardisation of it is equal to p



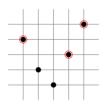
For example, let $\pi=42135$. π contains p=213 because $\mathrm{st}(425)=213$,

We say that a permutation π contains a smaller permutation p (called a (classical permutation) pattern) if there exists a substring of π such that the standardisation of it is equal to p



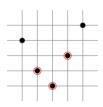
For example, let $\pi=42135$. π contains p=213 because $\mathrm{st}(425)=213$, $\mathrm{st}(415)=213$,

We say that a permutation π contains a smaller permutation p (called a (classical permutation) pattern) if there exists a substring of π such that the standardisation of it is equal to p



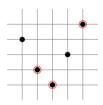
For example, let $\pi=42135$. π contains p=213 because $\mathrm{st}(425)=213$, $\mathrm{st}(415)=213$, $\mathrm{st}(435)=213$,

We say that a permutation π contains a smaller permutation p (called a (classical permutation) pattern) if there exists a substring of π such that the standardisation of it is equal to p



For example, let $\pi=42135$. π contains p=213 because $\mathrm{st}(425)=213$, $\mathrm{st}(415)=213$, $\mathrm{st}(435)=213$, $\mathrm{st}(213)=213$ and

We say that a permutation π contains a smaller permutation p (called a (classical permutation) pattern) if there exists a substring of π such that the standardisation of it is equal to p



For example, let $\pi=42135$. π contains p=213 because $\mathrm{st}(425)=213$, $\mathrm{st}(415)=213$, $\mathrm{st}(435)=213$, $\mathrm{st}(213)=213$ and $\mathrm{st}(215)=213$

Pattern containment and occurrences (continued)

► The substrings 425, 415, 435, 213 and 215 are the *occurrences* of 213 in 42135

Pattern containment and occurrences (continued)

- ► The substrings 425, 415, 435, 213 and 215 are the *occurrences* of 213 in 42135
- ▶ The corresponding *index sets* are $\{1,2,5\}$, $\{1,3,5\}$, $\{1,4,5\}$, $\{2,3,4\}$, $\{2,3,5\}$

Pattern containment and occurrences (continued)

- ► The substrings 425, 415, 435, 213 and 215 are the *occurrences* of 213 in 42135
- ▶ The corresponding *index sets* are $\{1,2,5\}$, $\{1,3,5\}$, $\{1,4,5\}$, $\{2,3,4\}$, $\{2,3,5\}$
- ► The set of all index sets of p=213 in $\pi=42135$ is the *occurrence set* of p in π , denoted with $V_p(\pi)$

- - ▶ Graphs
 - Permutations
- 2. Occurence graphs
 - ▶ Definition of occurence graphs
- - ► Main theorem
 - Examples
 - ▶ Non-examples

Definition of occurence graphs

For a pattern $p \in \mathfrak{S}_k$ and for a permutation $\pi \in \mathfrak{S}_n$ we define the *occurrence* graph $G_p(\pi)$ of p in π in the following way:

Definition of occurence graphs

For a pattern $p \in \mathfrak{S}_k$ and for a permutation $\pi \in \mathfrak{S}_n$ we define the occurrence graph $G_p(\pi)$ of p in π in the following way:

▶ The set of vertices is $V_p(\pi)$, the occurrence set of p in π

Definition of occurence graphs

For a pattern $p \in \mathfrak{S}_k$ and for a permutation $\pi \in \mathfrak{S}_n$ we define the *occurrence graph* $G_p(\pi)$ of p in π in the following way:

- ▶ The set of vertices is $V_p(\pi)$, the occurrence set of p in π
- uv is an edge in $G_p(\pi)$ if the vertices $u = \{u_1, \dots, u_k\}$ and $v = \{v_1, \dots, v_k\}$ in $V_p(\pi)$ differ by exactly one element, i.e. if

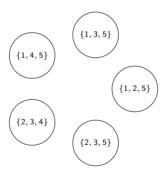
$$|u \setminus v| = |v \setminus u| = 1$$

An example of an occurrence graph

In previous example we derived the occurrence set $V_{213}(42135)$

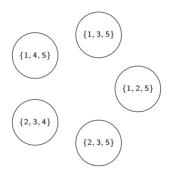
An example of an occurrence graph

In previous example we derived the occurrence set $V_{213}(42135)$



An example of an occurrence graph

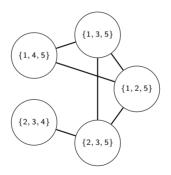
In previous example we derived the occurrence set $V_{213}(42135)$



We compute the edges of $G_{213}(42135)$ by comparing the vertices two at a time to see if the sets differ by exactly one element

An example of an occurrence graph

In previous example we derived the occurrence set $V_{213}(42135)$



We compute the edges of $G_{213}(42135)$ by comparing the vertices two at a time to see if the sets differ by exactly one element

Let id_n be the identity permutation of length n. The graph $G_{12}(\mathrm{id}_n)$ has

Let id_n be the identity permutation of length n. The graph $G_{12}(\mathrm{id}_n)$ has

 \triangleright $\binom{n}{2}$ vertices

Let id_n be the identity permutation of length n. The graph $G_{12}(id_n)$ has

- \triangleright $\binom{n}{2}$ vertices
- \triangleright 3 $\binom{n}{3}$ edges

Let id_n be the identity permutation of length n. The graph $G_{12}(id_n)$ has

- \triangleright $\binom{n}{2}$ vertices
- \triangleright 3 $\binom{n}{3}$ edges
- ▶ $(n-2)\binom{n}{3}$ triangles

Let id_n be the identity permutation of length n. The graph $G_{12}(id_n)$ has

- \triangleright $\binom{n}{2}$ vertices
- \triangleright 3 $\binom{n}{3}$ edges
- $(n-2)\binom{n}{3}$ triangles
- ▶ $n\binom{n-1}{k}$ k-cliques with k > 3

Let id_n be the identity permutation of length n. The graph $G_{12}(id_n)$ has

- \triangleright $\binom{n}{2}$ vertices
- ▶ $3\binom{n}{3}$ edges
- $(n-2)\binom{n}{3}$ triangles
- ▶ $n\binom{n-1}{k}$ k-cliques with k > 3

because such a clique can be formed by choosing an index i among $1, \ldots, n$ to be the shared index in all the vertices in the clique. The remaining indices can be chosen from $\{1, \ldots, n\} \setminus i$

- 1. Background
 - ▶ Graphs
 - Permutations
- 2. Occurence graphs
 - ▶ Definition of occurence graphs
- 3. Some results
 - ▶ Main theorem
 - Examples
 - ▶ Non-examples

Hereditary property

We call a property of a graph G hereditary if it is invariant under isomorphisms and for every subgraph of G the property also holds

Hereditary property

We call a property of a graph G hereditary if it is invariant under isomorphisms and for every subgraph of G the property also holds

For example the properties of being a forest, bipartite, planar or k-colorable are hereditary properties. The property of being a tree is not hereditary

Hereditary property

We call a property of a graph G hereditary if it is invariant under isomorphisms and for every subgraph of G the property also holds

For example the properties of being a forest, bipartite, planar or k-colorable are hereditary properties. The property of being a tree is not hereditary

Let c be a property of graphs and let

$$\mathscr{G}_{p,c} = \{ \pi \in \mathfrak{S} \colon G_p(\pi) \text{ has property } c \}$$

Main theorem

Theorem

Let c be a hereditary property of graphs. For any pattern p the set $\mathcal{G}_{p,c}$ is a permutation class, i.e. there is a set of classical permutation patterns M such that

$$\mathscr{G}_{p,c} = \operatorname{Av}(M)$$

Table: Experiments for bipartite occurrence graphs. (Up to length 8)

p	basis	Number seq.
12	123, 1432, 3214	1, 2, 5, 12, 26, 58, 131, 295
123	1234, 12543, 14325, 32145	1, 2, 6, 23, 100, 462, 2207, 10758
132	1432, 12354, 13254, 13452,	1, 2, 6, 23, 95, 394, 1679, 7358
	15234, 21354, 23154,	
	31254, 32154	

Table: Experiments for bipartite occurrence graphs. (Up to length 8)

p	basis	Number seq.
12	123, 1432, 3214	1, 2, 5, 12, 26, 58, 131, 295
123	1234, 12543, 14325, 32145	1, 2, 6, 23, 100, 462, 2207, 10758
132	1432, 12354, 13254, 13452,	1, 2, 6, 23, 95, 394, 1679, 7358
	15234, 21354, 23154,	
	31254, 32154	

The first line follows from the fact that every cycle in $G_{12}(\pi)$ has length 3 or 4. The sequence is on OEIS. The others are not

Table: Experiments for occurrence graphs that are forests. (Up to length 8)

р	basis	Number seq.
12	123, 1432, 2143, 3214	1, 2, 5, 11, 24, 53, 117, 258
123	1234, 12543, 13254, 14325,	1, 2, 6, 23, 97, 429, 1947, 8959
	21354, 21435, 32145	
132	1432, 12354, 12453, 12534,	1, 2, 6, 23, 90, 359, 1481, 6260
	13254, 13452, 14523, 15234,	
	21354, 21453, 21534, 23154,	
	31254, 32154	

Table: Experiments for occurrence graphs that are forests. (Up to length 8)

р	basis	Number seq.
12	123, 1432, 2143, 3214	1, 2, 5, 11, 24, 53, 117, 258
123	1234, 12543, 13254, 14325,	1, 2, 6, 23, 97, 429, 1947, 8959
	21354, 21435, 32145	
132	1432, 12354, 12453, 12534,	1, 2, 6, 23, 90, 359, 1481, 6260
	13254, 13452, 14523, 15234,	
	21354, 21453, 21534, 23154,	
	31254, 32154	

The first line follows from the fact that every cycle in $G_{12}(\pi)$ has length 3 or 4. The sequence is on OEIS. The others are not

Non-hereditary properties

Table: Experiments for $G_{12}(\pi)$ satisfying non-hereditary properties. (Up to length 8)

Property	basis	Number seq.
connected		1, 2, 6, 23, 111, 660, 4656
tree	infinite non-classical basis	0, 1, 4, 9, 16, 25, 36, 49
chordal	1234, 1243, 1324, 2134,	1, 2, 6, 19, 61, 196, 630, 2025
	2143	
clique	1234, 1243, 1324, 1342,	1, 2, 6, 12, 20, 30, 42, 56
	1423, 2134, 2143, 2314,	
	2413, 3124, 3142, 3412	

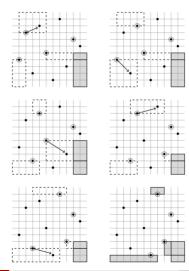
Non-hereditary properties

Table: Experiments for $G_{12}(\pi)$ satisfying non-hereditary properties. (Up to length 8)

Property	basis	Number seq.
connected		1, 2, 6, 23, 111, 660, 4656
tree	infinite non-classical basis	0, 1, 4, 9, 16, 25, 36, 49
chordal	1234, 1243, 1324, 2134,	1, 2, 6, 19, 61, 196, 630, 2025
	2143	
clique	1234, 1243, 1324, 1342,	1, 2, 6, 12, 20, 30, 42, 56
	1423, 2134, 2143, 2314,	
	2413, 3124, 3142, 3412	

The first line follows by staring. Also easy to count tree result

Motivation



Crushed hopes

Pattern statistics are hard: How many permutations of length n have exactly k occurrence of the pattern p?

The end

Questions, comments?