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Definition (Permutation)

A permutation is considered to be an arrangement of the numbers
1, 2, . . . , n for some positive n.

Definition (Pattern)

A permutation, or pattern, π is said to be contained in, or be a
subpermutation of, another permutation, σ if σ contains a
subsequence order isomorphic to π.

π = 314592687
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Definition (Permutation)

A permutation is considered to be an arrangement of the numbers
1, 2, . . . , n for some positive n.

Definition (Pattern)

A permutation, or pattern, π is said to be contained in, or be a
subpermutation of, another permutation, σ if σ contains a
subsequence order isomorphic to π.

π = 314592687
σ = 1423
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Definition (Classical Permutation Classes)

A Classical permutation class, is a set of permutations closed
downwards under the subpermutation relation. We define a
classical permutation class by stating the minimal set of
permutations that it avoids.
This minimal forbidden set of patterns is known as the basis for
the class. The class with basis B is denoted Av(B) and Avn(B) is
used to denote the set of permutations of length n in Av(B).
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132-avoiding permutations

Given any permutation, π, we can extract the left-to-right minima.
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For any permutation π ∈ Avn(132)
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Given this representation we can construct a graph
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An independent set of size k and a positive integer sequence of
length k uniquely determines a 132-avoider.
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There is in bijection with non-crossing subgraphs on a regular
polygon and the independent sets.
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We can also directly enumerate this.
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d F

0 x · F
1 x · y · F 2

2 x · y2 · F 2(F − 1)
...

...
n x · yn · F 2(F − 1)n−1

...
...

Deriving the generating function.
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This leads to the following generating function:

F (x , y) = 1 + x · F (x , y) +
xy · F (x , y)2

1− y · (F (x , y)− 1)
.

Evaluating F
(
x , x

1−x

)
gives the Catalan numbers.
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1324-avoiders

Given π ∈ Avn(1324) we can extract the boundary.
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Non-intersecting boundary of a 1324-avoider.
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For 1324-avoiders with non-intersecting boundary and two right to
left maxima.

Let:

G =
x2 · F

1− y · (F − 1)

Then:

H =
G + 1

1− y · G
− 1
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This corresponds to non-crossing subgraphs on a polygon with
multiple edges as shown below.
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