Refined inversion statistics on permutations

Joshua Sack^{*} and Henning Úlfarsson[†] * Dept. of Math. and Stats., Cal. State Univ. Long Beach † ICE-TCS, School of Computer Science, Reykjavik University

Boston January 4–7, 2012

Definition

A permutation of rank *n* is a bijective function $\pi : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}.$

Definition

An inversion in a permutation π is a pair (a, b), such that $0 \le a < b \le n$ and $\pi_a > \pi_b$. A non-inversion is a pair (a, b), such that $0 \le a < b \le n$ and $\pi_a < \pi_b$.

Example

- $\pi = 32415$ has
 - four inversions: (1,2), (1,4), (2,4), (3,4)
 - six non-inversions: (1,3), (1,5), (2,3), (2,5), (3,5), (4,5)

Non-inversion Sums

 $INV(\pi)$ is the set of all inversions of π and $NINV(\pi)$ is the set of all non-inversions of π .

Definition

• The inversion sum of π is given by

$$\mathsf{invsum}(\pi) = \sum_{(a,b)\in\mathsf{INV}(\pi)} (b-a)$$

• The non-inversion sum of π is given by

$$\mathsf{ninvsum}(\pi) = \sum_{(a,b)\in\mathsf{NINV}(\pi)} (b-a)$$

Proposition

$$\sum_{(a,b)\in\mathsf{NINV}(\pi)}\pi(b)-\pi(a)=\sum_{(a,b)\in\mathsf{NINV}(\pi)}b-a$$

Sack and Úlfarsson Refined inversion statistics on permutations

Cosine of a permutation

Let 1 be the identity permutation of rank n.

Definition

For any permutation π of rank n, the cosine of π is

$$\cos(\pi) = \mathbf{1} \cdot \pi = \sum_{i=1}^{n} i\pi(i)$$

Observation

Given a permutation π of rank *n*, if θ is the angle between the vectors corresponding to π and **1**.

$$\cos(\pi) = a(n)\cos(\theta),$$

where a(n) = n(n+1)(2n+1)/6.

Theorem

For $k \ge 35$, there exists a permutation π such that $\cos(\pi) = \mathbf{1} \cdot \pi = k$

The total number of permutations π such that $\cos(\pi) = k$ is given by the sequence

A135298 in the Online Encyclopedia of Integer Sequences.

Our theorem shows that this sequence is non-zero after k = 34.

Non-inversion sum and cosine

If
$$\pi=\pi_1\cdots\pi_n$$
, then $\pi^{\mathrm{c}}=(n+1-\pi_1)\cdots(n+1-\pi_n).$

Theorem

$$\cos(\pi) = \mathbf{1} \cdot \mathbf{1}^{\mathrm{c}} + \mathsf{ninvsum}(\pi) = \binom{n+2}{3} + \mathsf{ninvsum}(\pi)$$

Theorem

For $n \ge 4$ and $0 \le k \le \binom{n+1}{3}$, there is a permutation π such that ninvsum $(\pi) = k$.

Theorem

For
$$n \ge 6$$
,

$$\binom{n+1}{3} + \binom{n}{3} \ge \binom{n+2}{3} - 1$$

Definition

Given a permutation π of rank *n*, its non-inversion zone-crossing vector is $nzcv(\pi) = (z_1, z_2, ..., z_n)$, where z_k is the number of non-inversions $(a, b) \in NINV(\pi)$, where $a \le k < b$.

Proposition

The sum of the coordinates of $nzcv(\pi)$ is equal to $ninvsum(\pi)$.

Let $nzcv(\pi)_k$ be the k^{th} coordinate of $nzcv(\pi)$.

Theorem

The number of permutations of rank n, such that $nzcv(\pi)_k = j$ is

$$k!(n-k)![q^j]\begin{bmatrix}n\\k\end{bmatrix}_q,$$

where for any polynomial p(q), its coefficient of q^{j} is denoted by $[q^{j}]p(q)$, and

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q! [n-k]_q!}, \qquad [n]_q! = \prod_{k=1}^n \frac{1-q^k}{1-q}.$$

Distribution function for non-inversion sum

We are interested in the distribution function for non-inversion sums:

$$N_n(q) = \sum_{\pi \in \mathfrak{S}_n} q^{\mathsf{ninvsum}(\pi)}$$

Theorem $N_{n+1}(q) = N_n(q) + \sum_{k=1}^{n-1} q^{\binom{k+1}{2}} \sum_{\pi \in \mathfrak{S}_n} q^{\operatorname{nzcv}(\pi)_k} q^{\operatorname{ninvsum}(\pi)} + q^{\binom{n+1}{2}} N_n(q).$

THANK YOU!

• J. Sack, H. Ulfarsson. *Refined inversion statistics on permutions*. arXiv:1106.1995, 2011