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Permutations

Permutations

Definition

A permutation of rank n is a bijection σ : {1, . . . , n} → {1, . . . , n}.

We denote the set of all (n! many) permutations of rank n by
Sn, the permutation group of n.

A permutation is a finite sequence (a function whose domain
is {1, . . . , n}). We may write σj for σ(j).
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Permutations

One-line notation

We will use one-line notation for permutations, for example,
σ = 32415 is the permutation in S5 that sends

1 7→ 3

2 7→ 2

3 7→ 4

4 7→ 1

5 7→ 5.



Patterns

Pattern

A classical permutation pattern is a permutation.

Definition

An occurrence of a pattern τ : {1, . . . , k} → {1 . . . , k} in a
permutation σ of rank n ≥ k is a subsequence {σmj}kj=1 of σ that
is order-isomorphic to τ , meaning that τi > τj iff σmi > σmj for
each i , j ∈ {1, . . . , k}.

Example: the permutation σ = 32415 has 5 occurrences of the
pattern τ = 213:

32415 32415 32415 32415 32415



Patterns

A motivating observation

By Knuth (1968) The Art of Computer Programming, Vol. 1:

Permutations that can be “sorted” by stacks are permutations that
avoid the pattern 312.

A permutation σ is sorted by a stack if there is a way to place
items onto the stack and off again such that the i th item to be
placed on is the σ(i)th to be taken off.



Inversions and non-inversions

Inversions

An inversion in a permutation is a pair of two letters in the wrong
order. The permutation σ = 32415 has four inversions.

32415 32415 32415 32415

Let inv(σ) be the number of inversions in σ.

We can also describe inversions as occurrences of the classical
pattern 21.
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Inversions and non-inversions

Non-inversions

A non-inversion in a permutation are two letters in the correct
order. The permutation σ = 32415 has six non-inversions.

32415 32415 32415 32415 32415 32415

Let ninv(σ) be the number of non-inversions in σ.

We can also describe non-inversions as occurrences of the classical
pattern 12.



Generating functions

Generating functions

Let occ(τ, σ) be the number of occurrences of a pattern τ in the
permutation σ. A generating function of rank n for a pattern τ is
the polynomial

An(x) =
∑
σ∈Sn

xocc(τ,σ).

For each k ,

the coefficient in An(x) of xk is the number of permutations
with exactly k occurrences of the pattern τ .

The constant term (the coefficient of x0) is the number of
permutations that avoid the pattern τ .

Observation

Counting occ(τ, σ) involves investigating one permutation, while
determining each coefficient of An(x) involves all permutations in
Sn. It is thus helpful to have an explicit representation of An.
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Generating functions

Example: The generating function for inversions.

Example

Consider the permutation group S2 = {12, 21}. Lets build the
generating function for number of inversions (occurrences of
τ = 21) for this group:

There is one permutation with zero inversions, namely 12.
This contributes 1 · x0 to the function.

There is one permutation with one inversion, namely 21.
This contributes 1 · x1 to the function.

A2(x) =

1 + x .

Now lets repeat this example for S3.
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Generating functions

Example

Consider the permutation group S3, which consists of

123, 132, 213, 231, 312, 321.

There is one permutation with zero inversions.
This contributes 1 · x0 to the function.

There are two permutations with one inversion.
This contributes 2 · x1 to the function.

There are two permutations with two inversions.
This contributes 2 · x2 to the function.

There is one permutation with three inversions
This contributes 1 · x3 to the function.

A3(x) =

1 + 2x + 2x2 + x3.
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Generating functions

The generating function for inversions

It is well-known among those who study permutation patterns that

An(x) =
∑
σ∈Sn

x inv(σ) = (1 + x)(1 + x + x2) · · · (1 + x + · · ·+ xn−1).

Another way to look at this is

An(x) =
n−1∑
j=0

x jAn−1(x).

Think of j as being n minus the value of σn, the number of
inversions that last position contributes.

The same formula holds true for non-inversions as for inversions.
We view j as one less than the value of σn.
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Refining the generating function

Let NINV(σ) be the set of non-inversions in σ. For (a, b) ∈ NINV,
a and b are positions that map to σ(a) and σ(b).

We can rewrite
∑

σ∈Sn
xninv(σ) as∑
σ∈Sn

∏
(a,b)∈NINV(σ)

x ,

and refine this to consider position and value separations:

Fn(x , y , z) =
∑
σ∈Sn

∏
(a,b)∈NINV(σ)

xyb−azσ(b)−σ(a).

Is it possible to give a nice description of this F?
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This function can be rewritten as

Fn(x , y , z) =
∑
σ∈Sn

xninv(σ)yαzβ,

where

α =
∑

(a,b)∈NINV(σ)

b − a, β =
∑

(a,b)∈NINV(σ)

σ(b)− σ(a).

For example

F2(x , y , z) = xyz + 1,

F3(x , y , z) = x3y4z4 + 2x2y3z3 + 2xyz + 1,

F4(x , y , z) = x6y10z10 + 3x5y9z9 + x4y8z8 + 4x4y7z7 + 2x3y6z6

+ 2x3y5z5 + 2x3y4z4 + 4x2y3z3 + x2y2z2 + 3xyz + 1.

All terms have y and z raised to the same power!
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Non-inversion sum lemma

ninv-sum

Lemma

For any permutation∑
(a,b)∈NINV(σ)

b − a =
∑

(a,b)∈NINV(σ)

σ(b)− σ(a).

If we denote the first sum with ninv-sum(σ), letting σi be the
inverse of σ, the second is∑

(σ(a),σ(b))∈NINV(σi)

σ(b)− σ(a) = ninv-sum(σi).

Then the lemma says

ninv-sum(σ) = ninv-sum(σi).



Non-inversion sum lemma

Proving the lemma by induction.

Let σ be an arbitrary permutation and let σ(n) = k and σ(hj) = j
for j < k . Let τ be obtained from σ by removing the last element,
k = σ(n). Then ninv-sum(τ) = ninv-sum(τ i). But

ninv-sum(σ) = ninv-sum(τ)+
∑k−1

j=1 | box1,j |+| box2,j |+| box3,j |+1

ninv-sum(σi) =
ninv-sum(τ i) +

∑k−1
j=1 | box1,j |+ | box2,j |+ | box4,j |+ 1.

j

hj

n

k

n

box1,j

box2,j

box3,j

box4,j

n

j

hj

k n

box1,jbox2,jbox3,j

box4,j



Non-inversion sum lemma

Proving the lemma by induction.

It remains to show that
∑k−1

j=1 | box3,j | =
∑k−1

j=1 | box4,j |.

j

hj

n

k

n

box1,j

box2,j

box3,j

box4,j

n

j

hj

k n

box1,jbox2,jbox3,j

box4,j

(a, σ(a)) ∈ box4,σ(b) iff
(a, b) ∈ INV with σ(a) < k iff
(b, σ(b)) ∈ box3,σ(a).



Generating function experimental progress

The refined generating function

Because of the lemma it suffices to look at the function

Gn(x , y) = Fn(x , y , 1) =
∑
π∈Sn

xninv(π)yninv-sum(π).

Here are some experimental results for Gn(1, y)

n Gn(1, y)

2 y + 1
3 p4
4 (y2 + 1)p8
5 (y2 − y + 1)p18
6 (y + 1)(y2 − y + 1)2p30
7 (y2 − y + 1)p54
8 (y4 + 1)(y2 − y + 1)p78
9 p120

where pk is an irreducible polynomial of degree k .



Descents

Descents

A descent in a permutation is a pair of adjacent letters in the
wrong order. The permutation σ = 32415 has two descents.

32415 32415

Let des(σ) be the number of descents in σ.

Note that a descent is a special case of an inversion.

Note:

We cannot describe a descent as an occurrence of a classical
pattern, but we can describe it as an occurrence of a “vincular
pattern” which places a restriction on the positions of the
subsequence.
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Descents

Closed formula for the generating function for descents.

For a general n, the generating function for the number of descents
is known to be the nth Eulerian polynomial En that is often defined
recursively by E0(x) = 0, and

En(x) =
n∑

k=0

(
n

k

)
Ek(x)(x−1)n−1−k =

n∑
k=0

n!Ek(x)

k!(n − k)!
(x−1)n−1−k .

Proposition

En(x) =
∑
σ∈Sn

xdes(σ)



k-step inversions

A k-step inversion is an an inversion (a, b) ∈ INV, such that
b − a = k .

Example

The permutation σ = 32415 has four inversions

32415 32415 32415 32415

The first is 1-step, second is 3-step, third is 2-step and the last is
1-step.

Note that a 1-step inversion is a descent.
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The generating function for k-step inversions

Let invk(σ) be the number of k-step inversions in σ. Then
inv(σ) =

∑n−1
k=1 invk(σ). Define

Hn,k(x) =
∑
σ∈Sn

x invk (σ).

Let I (n, k , i) represent the coefficient of x i in Hn,k(x), that is, the
number of permutations in Sn with the number of k-step
inversions equalling the number i .



A formula for Hn,k

Theorem

For 1 ≤ k ≤ n let s = bn/kc+ 1 and t = rem(n/k). If k < n/2

Hn,k(x) = I (n, k , 0)E t
s (x)E k−t

s−1 (x),

where E`(x) is the `th Eulerian polynomial, the generating function
for the number of descents in a permutation.

Note that if we let k = 1 then the formula in the theorem gives

Hn,1(x) = I (n, 1, 0)E 0
n+1(x)E 1

n (x) = En(x),

since I (n, 1, 0) = 1. This is to be expected since a 1-step inversion
is a descent.
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Idea behind the proof

Consider the case n = 11, k = 4. Consider the following 4 “runs”,
where 4-step inversions can only occur positions within the same
run. Of those 3 are of length 3.

1 2 3 4 5 6 7 8 9 10 11

The remaining 1 is of length 2.

1 2 3 4 5 6 7 8 9 10 11

This implies that H11,4 = I (11, 4, 0)E 3
3 (x)E 1

2 (x).



Thank you!
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