Counting special inversions in permutations

Joshua Sack joint work in progress with Henning Arnór Úlfarsson, RU

School of Computer Science, Reykjavik University

December 3, 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Table of Contents

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Permutations

Permutations

Definition

A permutation of rank *n* is a bijection $\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Permutations

Permutations

Definition

A permutation of rank *n* is a bijection $\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$.

- We denote the set of all (n! many) permutations of rank n by \mathfrak{S}_n , the permutation group of n.
- A permutation is a finite sequence (a function whose domain is {1,..., n}). We may write σ_j for σ(j).

Permutations

One-line notation

We will use *one-line notation* for permutations, for example, $\sigma = 32415$ is the permutation in \mathfrak{S}_5 that sends

 $1 \mapsto 3$ $2 \mapsto 2$ $3 \mapsto 4$ $4 \mapsto 1$ $5 \mapsto 5.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pattern

A classical permutation pattern is a permutation.

Definition

An occurrence of a pattern $\tau : \{1, \ldots, k\} \to \{1 \ldots, k\}$ in a permutation σ of rank $n \ge k$ is a subsequence $\{\sigma_{m_j}\}_{j=1}^k$ of σ that is *order-isomorphic* to τ , meaning that $\tau_i > \tau_j$ iff $\sigma_{m_i} > \sigma_{m_j}$ for each $i, j \in \{1, \ldots, k\}$.

Example: the permutation $\sigma = 32415$ has 5 occurrences of the pattern $\tau = 213$:

32415 **32**415 **32415** 32415 32415

Patterns

A motivating observation

By Knuth (1968) The Art of Computer Programming, Vol. 1:

Permutations that can be "sorted" by stacks are permutations that avoid the pattern 312.

A permutation σ is *sorted* by a stack if there is a way to place items onto the stack and off again such that the *i*th item to be placed on is the $\sigma(i)^{\text{th}}$ to be taken off.

Inversions

An inversion in a permutation is a pair of two letters in the wrong order. The permutation $\sigma = 32415$ has four inversions.

32415 **3**24**1**5 **32**4**1**5 **32**4**1**5

Inversions

An inversion in a permutation is a pair of two letters in the wrong order. The permutation $\sigma = 32415$ has four inversions.

32415 **3**24**1**5 **3241**5 **3241**5

Let $inv(\sigma)$ be the number of inversions in σ .

Inversions

An inversion in a permutation is a pair of two letters in the wrong order. The permutation $\sigma = 32415$ has four inversions.

32415 **3**24**1**5 **32**4**1**5 **32**4**1**5

Let $inv(\sigma)$ be the number of inversions in σ .

We can also describe inversions as occurrences of the classical pattern 21.

Non-inversions

A non-inversion in a permutation are two letters in the correct order. The permutation $\sigma = 32415$ has six non-inversions.

32415 **324**15 **324**15 **324**15 **324**15 **324**15 **324**15

Let ninv(σ) be the number of non-inversions in σ .

We can also describe non-inversions as occurrences of the classical pattern 12.

Generating functions

Let $occ(\tau, \sigma)$ be the number of occurrences of a pattern τ in the permutation σ . A generating function of rank *n* for a pattern τ is the polynomial

$$A_n(x) = \sum_{\sigma \in \mathfrak{S}_n} x^{\operatorname{occ}(\tau,\sigma)}.$$

Generating functions

Let $occ(\tau, \sigma)$ be the number of occurrences of a pattern τ in the permutation σ . A generating function of rank *n* for a pattern τ is the polynomial

$$A_n(x) = \sum_{\sigma \in \mathfrak{S}_n} x^{\operatorname{occ}(\tau,\sigma)}.$$

For each k,

 the coefficient in A_n(x) of x^k is the number of permutations with exactly k occurrences of the pattern τ.

The constant term (the coefficient of x^0) is the number of permutations that avoid the pattern τ .

Generating functions

Let $occ(\tau, \sigma)$ be the number of occurrences of a pattern τ in the permutation σ . A generating function of rank *n* for a pattern τ is the polynomial

$$A_n(x) = \sum_{\sigma \in \mathfrak{S}_n} x^{\operatorname{occ}(\tau,\sigma)}.$$

For each k,

 the coefficient in A_n(x) of x^k is the number of permutations with exactly k occurrences of the pattern τ.

The constant term (the coefficient of x^0) is the number of permutations that avoid the pattern τ .

Observation

Counting $occ(\tau, \sigma)$ involves investigating one permutation, while determining each coefficient of $A_n(x)$ involves all permutations in \mathfrak{S}_n . It is thus helpful to have an explicit representation of A_n .

Example

Consider the permutation group $\mathfrak{S}_2 = \{12, 21\}$. Lets build the generating function for number of inversions (occurrences of $\tau = 21$) for this group:

- There is one permutation with zero inversions, namely 12. This contributes $1 \cdot x^0$ to the function.
- There is one permutation with one inversion, namely 21. This contributes $1 \cdot x^1$ to the function.

$$A_2(x) =$$

Example

Consider the permutation group $\mathfrak{S}_2 = \{\underline{\underline{12}}, 21\}$. Lets build the generating function for number of inversions (occurrences of $\tau = 21$) for this group:

- There is one permutation with zero inversions, namely 12. This contributes $1 \cdot x^0$ to the function.
- There is one permutation with one inversion, namely 21. This contributes $1 \cdot x^1$ to the function.

$$A_2(x)=1$$

Example

Consider the permutation group $\mathfrak{S}_2 = \{12, \underline{21}\}$. Lets build the generating function for number of inversions (occurrences of $\tau = 21$) for this group:

- There is one permutation with zero inversions, namely 12. This contributes $1 \cdot x^0$ to the function.
- There is one permutation with one inversion, namely 21. This contributes $1 \cdot x^1$ to the function.

$$A_2(x)=1+x.$$

Example

Consider the permutation group $\mathfrak{S}_2 = \{12, 21\}$. Lets build the generating function for number of inversions (occurrences of $\tau = 21$) for this group:

- There is one permutation with zero inversions, namely 12. This contributes $1 \cdot x^0$ to the function.
- There is one permutation with one inversion, namely 21. This contributes $1 \cdot x^1$ to the function.

$$A_2(x)=1+x.$$

Now lets repeat this example for \mathfrak{S}_3 .

Consider the permutation group \mathfrak{S}_3 , which consists of

123, 132, 213, 231, 312, 321.

- There is one permutation with zero inversions. This contributes $1 \cdot x^0$ to the function.
- There are two permutations with one inversion. This contributes $2 \cdot x^1$ to the function.
- There are two permutations with two inversions. This contributes $2 \cdot x^2$ to the function.
- There is one permutation with three inversions This contributes $1 \cdot x^3$ to the function.

$$A_3(x) =$$

Consider the permutation group \mathfrak{S}_3 , which consists of

 $\underline{123}, 132, 213, 231, 312, 321.$

- There is one permutation with zero inversions. This contributes $1 \cdot x^0$ to the function.
- There are two permutations with one inversion. This contributes $2 \cdot x^1$ to the function.
- There are two permutations with two inversions. This contributes $2 \cdot x^2$ to the function.
- There is one permutation with three inversions This contributes $1 \cdot x^3$ to the function.

$$A_3(x)=1$$

Consider the permutation group \mathfrak{S}_3 , which consists of

 $123, \underline{132}, \underline{213}, 231, 312, 321.$

- There is one permutation with zero inversions. This contributes $1 \cdot x^0$ to the function.
- There are two permutations with one inversion. This contributes $2 \cdot x^1$ to the function.
- There are two permutations with two inversions. This contributes $2 \cdot x^2$ to the function.
- There is one permutation with three inversions This contributes $1 \cdot x^3$ to the function.

$$A_3(x)=1+2x$$

Consider the permutation group \mathfrak{S}_3 , which consists of

 $123, 132, 213, \underline{\underline{231}}, \underline{\underline{312}}, 321.$

- There is one permutation with zero inversions. This contributes $1 \cdot x^0$ to the function.
- There are two permutations with one inversion. This contributes $2 \cdot x^1$ to the function.
- There are two permutations with two inversions. This contributes $2 \cdot x^2$ to the function.
- There is one permutation with three inversions This contributes $1 \cdot x^3$ to the function.

$$A_3(x) = 1 + 2x + 2x^2$$

Consider the permutation group \mathfrak{S}_3 , which consists of

 $123, 132, 213, 231, 312, \underline{321}.$

- There is one permutation with zero inversions. This contributes $1 \cdot x^0$ to the function.
- There are two permutations with one inversion. This contributes $2 \cdot x^1$ to the function.
- There are two permutations with two inversions. This contributes $2 \cdot x^2$ to the function.
- There is one permutation with three inversions This contributes $1 \cdot x^3$ to the function.

$$A_3(x) = 1 + 2x + 2x^2 + x^3.$$

The generating function for inversions

It is well-known among those who study permutation patterns that

$$A_n(x) = \sum_{\sigma \in \mathfrak{S}_n} x^{\mathsf{inv}(\sigma)} = (1+x)(1+x+x^2)\cdots(1+x+\cdots+x^{n-1}).$$

(ロ)、(型)、(E)、(E)、 E) のQの

The generating function for inversions

It is well-known among those who study permutation patterns that

$$A_n(x) = \sum_{\sigma \in \mathfrak{S}_n} x^{\mathsf{inv}(\sigma)} = (1+x)(1+x+x^2)\cdots(1+x+\cdots+x^{n-1}).$$

Another way to look at this is

$$A_n(x) = \sum_{j=0}^{n-1} x^j A_{n-1}(x).$$

Think of *j* as being *n* minus the value of σ_n , the number of inversions that last position contributes.

The generating function for inversions

It is well-known among those who study permutation patterns that

$$A_n(x) = \sum_{\sigma \in \mathfrak{S}_n} x^{\mathsf{inv}(\sigma)} = (1+x)(1+x+x^2)\cdots(1+x+\cdots+x^{n-1}).$$

Another way to look at this is

$$A_n(x) = \sum_{j=0}^{n-1} x^j A_{n-1}(x).$$

Think of *j* as being *n* minus the value of σ_n , the number of inversions that last position contributes.

The same formula holds true for non-inversions as for inversions. We view j as one less than the value of σ_n .

Refining the generating function

Let NINV(σ) be the set of non-inversions in σ . For $(a, b) \in NINV$, a and b are positions that map to $\sigma(a)$ and $\sigma(b)$.

Refining the generating function

Let NINV(σ) be the set of non-inversions in σ . For $(a, b) \in NINV$, a and b are positions that map to $\sigma(a)$ and $\sigma(b)$. We can rewrite $\sum_{\sigma \in \mathfrak{S}_n} x^{\operatorname{ninv}(\sigma)}$ as

$$\sum_{\sigma \in \mathfrak{S}_n} \prod_{(a,b) \in \mathsf{NINV}(\sigma)} x,$$

and refine this to consider position and value separations:

$$F_n(x, y, z) = \sum_{\sigma \in \mathfrak{S}_n} \prod_{(a,b) \in \mathsf{NINV}(\sigma)} x y^{b-a} z^{\sigma(b)-\sigma(a)}$$

Is it possible to give a nice description of this F?

This function can be rewritten as

$$F_n(x,y,z) = \sum_{\sigma \in \mathfrak{S}_n} x^{\operatorname{ninv}(\sigma)} y^{\alpha} z^{\beta},$$

where

$$\alpha = \sum_{(a,b)\in\mathsf{NINV}(\sigma)} b - a, \qquad \beta = \sum_{(a,b)\in\mathsf{NINV}(\sigma)} \sigma(b) - \sigma(a).$$

This function can be rewritten as

$$F_n(x,y,z) = \sum_{\sigma \in \mathfrak{S}_n} x^{\operatorname{ninv}(\sigma)} y^{\alpha} z^{\beta},$$

where

$$\alpha = \sum_{(a,b)\in\mathsf{NINV}(\sigma)} b - a, \qquad \beta = \sum_{(a,b)\in\mathsf{NINV}(\sigma)} \sigma(b) - \sigma(a).$$

For example

$$\begin{split} F_2(x, y, z) &= xyz + 1, \\ F_3(x, y, z) &= x^3 y^4 z^4 + 2x^2 y^3 z^3 + 2xyz + 1, \\ F_4(x, y, z) &= x^6 y^{10} z^{10} + 3x^5 y^9 z^9 + x^4 y^8 z^8 + 4x^4 y^7 z^7 + 2x^3 y^6 z^6 \\ &\quad + 2x^3 y^5 z^5 + 2x^3 y^4 z^4 + 4x^2 y^3 z^3 + x^2 y^2 z^2 + 3xyz + 1. \end{split}$$

This function can be rewritten as

$$F_n(x,y,z) = \sum_{\sigma \in \mathfrak{S}_n} x^{\operatorname{ninv}(\sigma)} y^{\alpha} z^{\beta},$$

where

$$\alpha = \sum_{(a,b)\in\mathsf{NINV}(\sigma)} b - a, \qquad \beta = \sum_{(a,b)\in\mathsf{NINV}(\sigma)} \sigma(b) - \sigma(a).$$

For example

$$\begin{split} F_2(x, y, z) &= xyz + 1, \\ F_3(x, y, z) &= x^3 y^4 z^4 + 2x^2 y^3 z^3 + 2xyz + 1, \\ F_4(x, y, z) &= x^6 y^{10} z^{10} + 3x^5 y^9 z^9 + x^4 y^8 z^8 + 4x^4 y^7 z^7 + 2x^3 y^6 z^6 \\ &\quad + 2x^3 y^5 z^5 + 2x^3 y^4 z^4 + 4x^2 y^3 z^3 + x^2 y^2 z^2 + 3xyz + 1. \end{split}$$

All terms have y and z raised to the same power!

ninv-sum

Lemma

For any permutation

$$\sum_{(a,b)\in\mathsf{NINV}(\sigma)}b-a=\sum_{(a,b)\in\mathsf{NINV}(\sigma)}\sigma(b)-\sigma(a).$$

If we denote the first sum with ninv-sum(σ), letting σ^i be the inverse of σ , the second is

$$\sum_{(\sigma(a),\sigma(b))\in \mathsf{NINV}(\sigma^{\mathrm{i}})} \sigma(b) - \sigma(a) = \mathsf{ninv-sum}(\sigma^{\mathrm{i}}).$$

Then the lemma says

$$\operatorname{ninv-sum}(\sigma) = \operatorname{ninv-sum}(\sigma^{i}).$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Proving the lemma by induction.

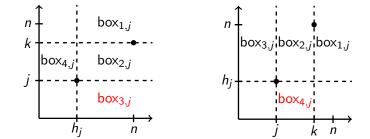
Let σ be an arbitrary permutation and let $\sigma(n) = k$ and $\sigma(h_i) = j$ for i < k. Let τ be obtained from σ by removing the last element, $k = \sigma(n)$. Then ninv-sum(τ) = ninv-sum(τ^{i}). But $\operatorname{ninv-sum}(\sigma) = \operatorname{ninv-sum}(\tau) + \sum_{i=1}^{k-1} |\operatorname{box}_{1,i}| + |\operatorname{box}_{2,i}| + |\operatorname{box}_{3,i}| + 1$ ninv-sum(σ^{i}) = ninv-sum $(\tau^{i}) + \sum_{j=1}^{k-1} | \log_{1,j} | + | \log_{2,j} | + | \log_{4,j} | + 1.$ box_{1,j} box_{3,j} box_{2,j} box_{1,j} n. $box_{2,i}$ box_{4.i} hi box_{4,i} box_{3,i} h;

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

Non-inversion sum lemma

Proving the lemma by induction.

It remains to show that $\sum_{j=1}^{k-1} | \operatorname{box}_{3,j} | = \sum_{j=1}^{k-1} | \operatorname{box}_{4,j} |$.



$$(a, \sigma(a)) \in box_{4,\sigma(b)}$$
 iff
 $(a, b) \in INV$ with $\sigma(a) < k$ iff
 $(b, \sigma(b)) \in box_{3,\sigma(a)}$.

Generating function experimental progress

The refined generating function

Because of the lemma it suffices to look at the function

$$G_n(x,y) = F_n(x,y,1) = \sum_{\pi \in \mathfrak{S}_n} x^{\operatorname{ninv}(\pi)} y^{\operatorname{ninv-sum}(\pi)}$$

Here are some experimental results for $G_n(1, y)$

$$\begin{array}{c|cccc} n & G_n(1,y) \\ \hline 2 & y+1 \\ 3 & p_4 \\ 4 & (y^2+1)p_8 \\ 5 & (y^2-y+1)p_{18} \\ 6 & (y+1)(y^2-y+1)^2p_{30} \\ 7 & (y^2-y+1)p_{54} \\ 8 & (y^4+1)(y^2-y+1)p_{78} \\ 9 & p_{120} \end{array}$$

where p_k is an irreducible polynomial of degree k_{\ldots} , k_{β} , k_{β

Descents

A descent in a permutation is a pair of adjacent letters in the wrong order. The permutation $\sigma = 32415$ has two descents.

32415 32**41**5

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Descents

A descent in a permutation is a pair of adjacent letters in the wrong order. The permutation $\sigma = 32415$ has two descents.

32415 32**41**5

Let $des(\sigma)$ be the number of descents in σ .

Note that a descent is a special case of an inversion.

Descents

A descent in a permutation is a pair of adjacent letters in the wrong order. The permutation $\sigma = 32415$ has two descents.

32415 32**41**5

Let $des(\sigma)$ be the number of descents in σ .

Note that a descent is a special case of an inversion.

Note:

We *cannot* describe a descent as an occurrence of a classical pattern, but we can describe it as an occurrence of a "vincular pattern" which places a restriction on the positions of the subsequence.

Closed formula for the generating function for descents.

For a general *n*, the generating function for the number of descents is known to be the n^{th} Eulerian polynomial E_n that is often defined recursively by $E_0(x) = 0$, and

$$E_n(x) = \sum_{k=0}^n \binom{n}{k} E_k(x)(x-1)^{n-1-k} = \sum_{k=0}^n \frac{n! E_k(x)}{k! (n-k)!} (x-1)^{n-1-k}$$

Proposition

$$E_n(x) = \sum_{\sigma \in \mathfrak{S}_n} x^{\mathsf{des}(\sigma)}$$

k-step inversions

A *k*-step inversion is an an inversion $(a, b) \in INV$, such that b - a = k.

Example

The permutation $\sigma = 32415$ has four inversions

32415 **3**24**1**5 **32**4**1**5 **32**4**1**5

The first is 1-step, second is 3-step, third is 2-step and the last is 1-step.

k-step inversions

A *k*-step inversion is an an inversion $(a, b) \in INV$, such that b - a = k.

Example

The permutation $\sigma = 32415$ has four inversions

32415 **3**24**1**5 **32**4**1**5 **32**4**1**5

The first is 1-step, second is 3-step, third is 2-step and the last is 1-step.

Note that a 1-step inversion is a descent.

The generating function for k-step inversions

Let $\operatorname{inv}_k(\sigma)$ be the number of k-step inversions in σ . Then $\operatorname{inv}(\sigma) = \sum_{k=1}^{n-1} \operatorname{inv}_k(\sigma)$. Define

$$H_{n,k}(x) = \sum_{\sigma \in \mathfrak{S}_n} x^{\mathrm{inv}_k(\sigma)}.$$

Let I(n, k, i) represent the coefficient of x^i in $H_{n,k}(x)$, that is, the number of permutations in \mathfrak{S}_n with the number of k-step inversions equalling the number *i*.

A formula for $H_{n,k}$

Theorem

For $1 \le k \le n$ let $s = \lfloor n/k \rfloor + 1$ and $t = \operatorname{rem}(n/k)$. If k < n/2

$$H_{n,k}(x) = I(n,k,0)E_s^t(x)E_{s-1}^{k-t}(x),$$

where $E_{\ell}(x)$ is the ℓ^{th} Eulerian polynomial, the generating function for the number of descents in a permutation.

A formula for $H_{n,k}$

Theorem

For $1 \le k \le n$ let $s = \lfloor n/k \rfloor + 1$ and $t = \operatorname{rem}(n/k)$. If k < n/2

$$H_{n,k}(x) = I(n,k,0)E_s^t(x)E_{s-1}^{k-t}(x),$$

where $E_{\ell}(x)$ is the ℓ^{th} Eulerian polynomial, the generating function for the number of descents in a permutation.

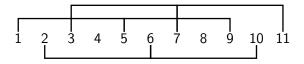
Note that if we let k = 1 then the formula in the theorem gives

$$H_{n,1}(x) = I(n,1,0)E_{n+1}^0(x)E_n^1(x) = E_n(x),$$

since I(n, 1, 0) = 1. This is to be expected since a 1-step inversion is a descent.

Idea behind the proof

Consider the case n = 11, k = 4. Consider the following 4 "runs", where 4-step inversions can only occur positions within the same run. Of those 3 are of length 3.



The remaining 1 is of length 2.

This implies that $H_{11,4} = I(11,4,0)E_3^3(x)E_2^1(x)$.

Thank you!

(ロ)、(型)、(E)、(E)、 E) の(の)