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We start with some definitions.
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Basic definitions

Permutations

A permutation in Sn is a bijection π : {1, . . . , n} → {1, . . . , n}.
We will use one-line notation for permutations, for example,
π = 32415 is the permutation in S5 that sends

1 7→ 3

2 7→ 2

3 7→ 4

4 7→ 1

5 7→ 5.



Inversions and descents (2, 2)-step non-inversions k-step inversions Certification and parity

Basic definitions

Descents

A descent in a permutation are two adjacent letters in the wrong
order. The permutation π = 32415 has two descents.

32415 32415

The first letter of a descent is called a descent top and the second
letter is called a descent bottom.

We can also describe descents as occurrences of the vincular
pattern 21.
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Basic definitions

Inversions

An inversion in a permutation are two letters in the wrong order.
The permutation π = 32415 has four inversions.

32415 32415 32415 32415

Note that a descent is a special case of an inversion. The first
letter of an inversion is called an inversion top and the second
letter is called an inversion bottom.

We can also describe descents as occurrences of the classical
pattern 21.
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Basic definitions
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Basic definitions

Non-inversions

A non-inversion in a permutation are two letters in the correct
order. The permutation π = 32415 has six non-inversions.

32415 32415 32415 32415 32415 32415

A non-inversion where the letters are adjacent is called an ascent.
The first letter of a non-inversion is called an non-inversion
bottom and the second letter is called a non-inversion top.

We can also describe descents as occurrences of the classical
pattern 12.
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(Non-)inversions with particular step sizes

(k , `)-step (non-)inversions

Given a permutation π and an inversion (i , j) in it we say it is a
(k , `)-step inversion if j − i = k and π(i)− π(j) = `. (Exact
same definition for non-inversions.)

Example

The permutation π = 32415 has four inversions

32415 32415 32415 32415

The first is (1, 1)-step, second is (3, 2)-step, third is (2, 1)-step and
the last is (1, 3)-step.
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Generating functions

The generating function for descents.

Generating functions are a convenient way to store a bunch of
numbers.

Example

Consider the permutation group S2 = {12, 21}. Lets build the
generating function for number of descents for this group. There is
one permutation with zero descents, namely 12. This contributes
1 · x0 to the function. There is one permutation with one descent,
namely 21. This contributes 1 · x1 to the function.

A(x) =

1 + x .

Now lets repeat this example for S3.
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Generating functions

The generating function for descents.

Example

Consider the permutation group S3, which consists of

123, 132, 213, 231, 312, 321.

Lets build the generating function for number of descents for this
group. There is one permutation with zero descents. This
contributes 1 · x0 to the function. There are four permutations
with one descent. This contributes 4 · x1 to the function. There is
one permutations with two descents. This contributes 1 · x2 to the
function.

A(x) =

1 + 4x + x2.
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Generating functions

The generating function for descents.

For a general n we get the n-th Eulerian polynomial as the
generating function for the number of descents.

En(x) =
∑
π∈Sn

xdes(π).
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We now want to focus specifically on (2, 2)-step non-inversions.
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Counting permutations with (2, 2)-step inversions

Empirical testing shows that the number of permutations that
contain at least one (2, 2)-step non-inversion (starting from rank
1) is

0, 0, 1, 6, 45, 310, 2311, 19414, . . . .

We aim to provide a formula for these numbers.

Example

Consider for example the permutation 153769482 which contains
three (2, 2)-step non-inversions (π(1, 3) = (1, 3), π(2, 4) = (5, 7)
and π(4, 6) = (7, 9)).
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The odd class and the even class

The odd class consists of pairs of the form (x , x + 2) where x is an
odd number and the even class consists of pairs of the same form
with x an even number.

1 2 3 4 5 6 7 8 9
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Selecting the pairs

We begin with an example of where we would like to select j = 3
pairs of positions of the form (x , x + 2) inside a permutation.
There are three distinct ways:

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Each way corresponds to a partition of 3: 3, 2 + 1, 1 + 1 + 1. Note
also that the number of elements involved in the pairs is 4, 5, 6,
respectively.
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Selecting the pairs

Given a permutation π of length n, for each partition λ of 3, let
P(n, λ) represent the number of ways of realizing the partition
inside the permutation. For example if λ = 3 then P(9, λ) = 3 as
can be seen below.

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
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Selecting the pairs

For a general j the distinct ways of finding j pairs inside a
permutation are in bijection with the partitions of j . For a fixed
partition λ = (λ1, λ2, . . . , λ`) of j we then have to decide which of
the components of λ go into the odd class and which go into the
even class. Write λn1 , λn2 , . . . , λnr for the unique numbers
appearing in λ and let α1, α2, . . . , αr be their multiplicities. Let
mλ =

∏
j αj !, and `λ = `, the number of components of λ.

Let us define

Q(n, j) =
∑
λaj

P(n, λ)2 ·mλ · (n − j − `λ)!.
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Overcounting

But Q(n, 1) does not count the number of permutations of rank n
that contain at least one (2, 2)-step non-inversion because most
permutations are counted more than once. Consider for example
the permutation 153769482 which contains three (2, 2)-step
non-inversions (π(1, 3) = (1, 3), π(2, 4) = (5, 7) and
π(4, 6) = (7, 9)). It will be counted three times in Q(9, 1). It will
also be counted three times in Q(9, 2), twice when λ = 1 + 1 and
once when λ = 2. Finally it will also be counted once in Q(9, 3)
when λ = 2 + 1.

1 2 3 4 5 6 7 8 9
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The final formula

Now notice that this particular permutation contributes 1 to the
sum

Q(9, 1)− Q(9, 2) + Q(9, 3)− . . . .

This cancellation works in general:

Theorem

The number of permutations in Sn that contain a (2, 2)-step
non-inversion is given by

n−2∑
j=1

(−1)j+1Q(n, j)
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The next few values

With this formula we can calculate the next few values of the
function

181381, 1865310, 20973099, 256179022, 3379395901,

47895552166, 725972592631, 11720476777494, 200813523247197,

3639573082928638.
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We know only pay attention to the displacement in location in the
(non)-inversions.
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k-step inversions

A k-step inversion is a (k , `)-step inversion for some `.

Example

The permutation π = 32415 has four inversions

32415 32415 32415 32415

The first is 1-step, second is 3-step, third is 2-step and the last is
1-step.
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A generating function

It is a well-known fact that∑
π∈Sn

xninv(π) = (1+x)(1+x +x2) · · · (1+x +x2+· · ·+xn−1) = [n]x !.

Now this is also equal to∑
π∈Sn

∏
(a,b)∈NINV(π)

x .

We can refine this into

Fn(x , y , z) =
∑
π∈Sn

∏
(a,b)∈NINV(π)

xyb−azπ(b)−π(a).

Is it possible to give a nice description of this F ?
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A generating function

This function can be rewritten as

Fn(x , y , z) =
∑
π∈Sn

xninv(π)yαzβ,

where

α =
∑

(a,b)∈NINV(π)

b − a, β =
∑

(a,b)∈NINV(π)

π(b)− π(a).

For example

F2(x , y , z) = xyz + 1,

F3(x , y , z) = x3y 4z4 + 2x2y 3z3 + 2xyz + 1,

F4(x , y , z) = x6y 10z10 + 3x5y 9z9 + x4y 8z8 + 4x4y 7z7 + 2x3y 6z6

+ 2x3y 5z5 + 2x3y 4z4 + 4x2y 3z3 + x2y 2z2 + 3xyz + 1.

All terms have y and z raised to the same power!
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inv-sum and ninv-sum

Lemma

For any permutation∑
(a,b)∈NINV(π)

b − a =
∑

(a,b)∈NINV(π)

π(b)− π(a).

If we denote the first sum with ninv-sum(π), then the lemma says

ninv-sum(π) = ninv-sum(πi).
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Proving the lemma by induction.

Let π be an arbitrary permutation and let π(n) = k and π(h) = 1.
Let τ be the permutation obtained from π by removing the last
element, k = π(n). Then ninv-sum(τ) = ninv-sum(τ i). But

ninv-sum(π) = ninv-sum(τ) +
k−1∑
i=1

| box1,i |+ | box2,i |

ninv-sum(πi) = ninv-sum(τ i) +
k−1∑
i=1

| box1,i |+ | box2,i |+ | box3,i | − i .

1

h

n

1

k

n

box1,1

box2,1box3,1

1

n

1

h

k n

box1,1box2,1

box3,1
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Proving the lemma by induction.

Finally it is easy to see that
∑k−1

i=1 | box3,i | − i = 0 so we are done.

1

h

n

1

k

n

box1,1

box2,1box3,1

1

n

1

h

k n

box1,1box2,1

box3,1
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The refined generating function

Because of the lemma it suffices to look at the function

Gn(x , y) = Fn(x , y , 1) =
∑
π∈Sn

xninv(π)y ninv-sum(π).

Here are some experimental results for Gn(1, y)

n Small factors

1 1
2 y + 1
3 1
4 (y 2 + 1)
5 (y 2 − y + 1)
6 (y + 1)(y 2 − y + 1)2

7 (y 2 − y + 1)
8 (y 4 + 1)(y 2 − y + 1)
9 1
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The cosine of the permutation

Definition

For a permutation π of rank n the number

1 · π =
n∑

i=1

iπ(i)

is called the cosine of the permutation.

Note that if we treat the permutations as vectors then

1 · π = |1| · |π| cos(θ) =
n(n + 1)(2n + 1)

6
cos(θ),

so 1 · π only depends on the cosine of the angle between the
identity and the permutation.
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The cosine and the non-inversion sum

If we calculate the cosine and the non-inversions sum for a few
random permutations we get

π 1 · π ninv-sum(π)

41352 45 10
21435 53 18
24513 44 9
25134 47 13

we might begin to suspect that the cosine and the non-inversion
sum always differ by the same number.
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The cosine and the non-inversion sum

Theorem

For any permutation π,

1 · π = 1 · 1r + ninv-sum(π).
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The permutohedron

Start with the vertex (1, 2) and form all permutations of its
coordinates. This will give the permutohedron of order 2. If you do
this for (1, 2, 3) you get the permutohedron of order 3.
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The permutohedron

Here is the permutohedron of order 4.
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The permutohedron

The previous theorem says that

1 · 1r + ninv-sum(π) = 1 · π =
n(n + 1)(2n + 1)

6
cos(θ).

So the cosine of the angle between the vertex represented by π and
the identity vertex (1, 2, 3, . . . , n) only depends on the sum over
the non-inversions of π.
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The relationship between the cosine and the non-inversion
sum

The motivation for considering the cosine comes from the following
question. Given an integer n is it always possible to find a
permutation such that 1 · π = n? (See A135298 on the OIES). It
seems to be true for n ≥ 35.

We haven’t been able to show this. We are trying to build
permutations with direct sums and skew sums. Then:

ninv-sum(π 	 ρ) = ninv-sum(π) + ninv-sum(ρ)

If the rank of π is n and the rank of ρ is m then

ninv-sum(π ⊕ ρ) = ninv-sum(π) + ninv-sum(ρ) +
mn

2
(m + n).
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The generating function for k-step inversions

Let invk(π) be the number of k-step inversions in π. Then
inv(π) =

∑n−1
k=1 invk(π). Define

Hn,k(x) =
∑
π∈Sn

x invk (π)

I (n, k , i) = [x i ]Hn,k(x)

represent the number of permutations in Sn with a number of
k-step inversions equalling the number i .
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A formula for Hn,k

Theorem

For 1 ≤ k ≤ n let s = bn/kc+ 1 and t = rem(n/k). If k < n/2

Hn,k(x) = I (n, k , 0)E t
s (x)E k−t

s−1 (x),

where E`(x) is the `th Eulerian polynomial, the generating function
for the number of descents in a permutation.

Note that if we let k = 1 then the formula in the theorem gives

Hn,1(x) = I (n, 1, 0)E 0
n+1(x)E 1

n (x) = En(x),

since I (n, 1, 0) = 1. This is to be expected since a 1-step inversion
is a descent.
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Idea behind the proof

Consider the case n = 11, k = 4. There are 4 runs in total. Of
those 3 are of length 3.

1 2 3 4 5 6 7 8 9 10 11

The remaining 1 is of length 2.

1 2 3 4 5 6 7 8 9 10 11

This implies that H11,4 = I (11, 4, 0)E 3
3 (x)E 1

2 (x).
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Another generating function

Let inv≤k(π) be the number of k ′-step inversions in π for all
k ′ ≤ k. Then

inv(π) = inv≤n(π), des(π) = inv≤1(π),

for any permutation of rank n. Define

Jn,≤k(x) =
∑
π∈Sn

x inv≤k (π).

So in particular we have

Jn,≤n(x) = (1 + x)(1 + x + x2) · · · (1 + x + x2 + · · · xn−1)

and
Jn,≤1(x) = En(x),

the nth Eulerian polynomial.
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A conjecture

We conjecture that the pattern

J3,≤1(x) = x2 + 4x + 1

J4,≤2(x) = (x + 1)(x4 + 2x3 + 6x2 + 2x + 1)

J5,≤3(x) = (x + 1)(x2 + x + 1)(x6 + 2x5 + 3x4 + 8x3 + 3x2 + 2x + 1)

continues (it does, at least up to J7,≤5).
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We now consider the relationship between our work and previous
work of Dukes-Reifergerste and Kitaev-Remmel.
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Certified non-inversions

Certified non-inversions

We recall some definitions from Dukes, Reifergerste, The area
above the Dyck path of a permutation: A certified non-inversion
in π is a non-inversion (a, b) in π such that there is at least one
position a < c < b such that π(c) > π(a), π(b).

In terms of mesh
patterns the number of certified non-inversions is equal to the
number of occurrences of

They then define lbsum(π) as the number of inversions in π
together with the number of certified non-inversions.
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Certified non-inversions

Certified k-step non-inversions

We now define lbsumk(π) as the number of k-step inversions in π
together with the number of certified k-step non-inversions.
Dukes and Reifergerste defined

Kn(x) =
∑
π∈Sn

x lbsum(π)

and proved a recurrence formula for it. We consider

Kn,k(x) =
∑
π∈Sn

x lbsumk (π)

and haven’t been able to find a recurrence formula for it.
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Certified non-inversions

Special cases of Kn,k(x)

Theorem

The number of permutations of rank n with lbsumn−2 equal to 2 is

(n − 2)!(n2 − 3n + 1).

Thus
Kn,n−2(x)

(n − 2)!
= (n2 − 3n + 1)x2 + 2(n − 1)x + 1.
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Fixing the parity

In Classifying descents according to parity and Classifying descents
according to equivalence mod k, Kitaev and Remmel studied
descents starting with an even number and more generally descents
starting with a number that is zero modulo some integer k. This
leads to the following definition:

Let modinvd ,k(π) be the number of k-step inversions with
inversion top that is zero modulo d . Let

Ln,d ,k(x) =
∑
π∈Sn

xmodinvd,k (π)
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Fixed parity of inversion tops

Fixing the parity

Theorem

The leading coefficient for k = n − 1 and d = 2 equals⌊n

2

⌋2
(n − 2)!.

Thus
Ln,2,n−1(x)

(n − 2)!
=

⌊n

2

⌋2
x + n(n − 1)−

⌊n

2

⌋2
.
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Fixed parity of inversion tops

Fixing the parity

Proof.

The formula for the leading coefficient is proved as follows: In
order to have one (n − 1)-step inversion with an even descent top
a permutation must start with an even number and end in some
smaller number. Thus we get the formula

(n − 2)!

b n
2
c∑

j=1

(2j − 1).

Simplification yields the claimed formula.
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Fixed parity of inversion tops

Thank you for your time!
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