Which Schubert varieties are local complete intersections?

Proceedings of the London Mathematical Society, Volume 107, Issue 5 (2013), Pages 1004–1052

Henning and Alexander

Grid We characterize by pattern avoidance the Schubert varieties for GL_n which are local complete intersections (lci). For those Schubert varieties which are local complete intersections, we give an explicit minimal set of equations cutting out their neighborhoods at the identity. Although the statement of our characterization only requires ordinary pattern avoidance, showing that the Schubert varieties not satisfying our conditions are not lci appears to require working with more general notions of pattern avoidance. The Schubert varieties defined by inclusions, originally introduced by Gasharov and Reiner, turn out to be an important subclass, and we further develop some of their combinatorics. Applications include formulas for Kostant polynomials and presentations of cohomology rings for lci Schubert varieties.

Download the paper

Presentations

Additional material