Collatz meets Fibonacci
To appear in The MAA Mathematics Magazine
The Collatz map is defined for a positive even integer as half that integer, and for a positive odd integer as that integer threefold, plus one. The Collatz conjecture states that when the map is iterated the number one is eventually reached. We study permutations that arise as sequences from this iteration. We show that permutations of this type of length up to 14 are enumerated by the Fibonacci numbers. Beyond that excess permutations appear. We will explain the appearance of these excess permutations and give an upper bound on the exact enumeration.
Download the paper
Presentations

Umraðanir í Collatzferlinu, Conference of the Icelandic Mathematics Society, October 2013 (Bjarki presented)

Permutations arising from the Collatz process and automatic discovery of patterns, MIT Combinatorics Seminar, October 2013 (Henning presented)

Collatz meets Fibonacci, abstract / poster, Permutation Patterns, July 2014 (Michael presented)